login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. exp(-x^2/2) / (1-x).
(Formerly M2991 N1211)
19

%I M2991 N1211 #75 Aug 06 2022 07:25:17

%S 1,1,1,3,15,75,435,3045,24465,220185,2200905,24209955,290529855,

%T 3776888115,52876298475,793144477125,12690313661025,215735332237425,

%U 3883235945814225,73781482970470275,1475629660064134575,30988222861346826075,681740902935880863075

%N Expansion of e.g.f. exp(-x^2/2) / (1-x).

%C a(n) is the number of permutations in the symmetric group S_n whose cycle decomposition contains no transposition.

%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 85.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.

%H Alois P. Heinz, <a href="/A000266/b000266.txt">Table of n, a(n) for n = 0..450</a> (first 101 terms from T. D. Noe)

%H Larry Carter and Stan Wagon, <a href="https://www.jstor.org/stable/48663293">The Mensa Correctional Institute</a>, The American Mathematical Monthly 125.4 (2018): 306-319.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=104">Encyclopedia of Combinatorial Structures 104</a>

%H Simon Plouffe, <a href="http://www.plouffe.fr/simon/exact.htm">Exact formulas for integer sequences</a>, March 1993.

%F E.g.f.: exp( x + Sum_{k>2} x^k / k ). - _Michael Somos_, Jul 25 2011

%F a(n) = n! * Sum_{i=0..floor(n/2)} (-1)^i /(i! * 2^i); a(n)/n! ~ Sum_{i>=0} (-1)^i /(i! * 2^i) = e^(-1/2); a(n) ~ e^(-1/2) * n!; a(n) ~ e^(-1/2) * (n/e)^n * sqrt(2*Pi*n). - Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001

%F A027616(n) + a(n) = n!. - Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 09 2003

%F a(n) = n!*floor((floor(n/2)! * 2^floor(n/2) / exp(1/2) + 1/2)) / (floor(n/2)! * 2^floor(n/2)), n >= 0. - _Simon Plouffe_ from old notes, 1993

%F E.g.f.: 1/(1-x)*exp(-(x^2)/2) = 1/((1-x)*G(0)); G(k) = 1+(x^2)/(2*(2*k+1)-2*(x^2)*(2*k+1)/((x^2)+4*(k+1)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Nov 24 2011

%F E.g.f.: 1/Q(0), where Q(k) = 1 - x/(1 - x/(x - (2*k+2)/Q(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 15 2013

%F D-finite with recurrence: a(n) - n*a(n-1) + (n-1)*a(n-2) - (n-1)*(n-2)*a(n-3) = 0. - _R. J. Mathar_, Feb 16 2020

%e a(3) = 3 because the permutations in S_3 that contain no transpositions are the trivial permutation and the two 3-cycles.

%p G:=exp(-z^2/2)/(1-z): Gser:=series(G,z=0,26): for n from 0 to 25 do a(n):=n!*coeff(Gser,z,n): end do: seq(a(n), n=0..20); # _Paul Weisenhorn_, May 29 2010

%p # second Maple program:

%p a:= proc(n) option remember; `if`(n=0, 1, add(

%p a(n-j)*(j-1)!*binomial(n-1, j-1), j=[1, $3..n]))

%p end:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, May 12 2016

%t a=Log[1/(1-x)]-x^2/2; Range[0,20]! CoefficientList[Series[Exp[a], {x,0,20}], x] (* _Geoffrey Critzer_, Nov 29 2011 *)

%o (PARI) {a(n) = if( n<0, 0, n! * polcoeff( exp(-(x^2/2)+x*O(x^n)) / (1 - x), n))} /* _Michael Somos_, Jul 28 2009 */

%Y See also A000138 and A000090.

%Y Cf. A027616, A130905, A193385.

%K nonn

%O 0,4

%A _N. J. A. Sloane_

%E More terms from _Christian G. Bower_

%E Entry improved by comments from _Michael Somos_, Jul 28 2009

%E Minor editing by _Johannes W. Meijer_, Jul 25 2011