Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2974 N1203 #31 Jan 01 2019 06:34:05
%S 1,1,3,14,80,518,3647,27274,213480,1731652,14455408,123552488,
%T 1077096124,9548805240,85884971043,782242251522,7203683481720,
%U 66989439309452,628399635777936,5940930064989720,56562734108608536
%N Number of 3-edge-connected rooted cubic maps with 2n nodes and a distinguished Hamiltonian cycle.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vincenzo Librandi, <a href="/A000264/b000264.txt">Table of n, a(n) for n = 1..200</a>
%H L. B. Richmond, <a href="http://dx.doi.org/10.1016/0095-8956(76)90031-9">On Hamiltonian polygons</a>, J. Combinatorial Theory Ser. B 21 (1976), no. 1, 81--87. MR0432491 (55 #5479) [See v_n].
%H W. T. Tutte, <a href="http://dx.doi.org/10.4153/CJM-1962-032-x">A census of Hamiltonian polygons</a>, Canad. J. Math., 14 (1962), 402-417.
%F Let b(n)=(2n)!*(2n+2)!/(2*n!*(n+1)!^2*(n+2)!). Let B(x) be the generating function producing b(n), and A(x) be the generating function producing a(n). Then these sequences satisfy the functional equation B(x)=A(x(1+2*B(x))^2). - _Sean A. Irvine_, Apr 05 2010
%t max = 21; b[n_] := (2n)!*(2n + 2)!/(2*n!*(n + 1)!^2*(n + 2)!); b[0] = 0; bf[x_] := Sum[b[n]*x^n, {n, 0, max}]; Clear[a]; a[0] = 0; a[1] = a[2] = 1; af[x_] := Sum[a[n]*x^n, {n, 0, max}]; se = Series[bf[x] - af[x*(1 + 2*bf[x])^2], {x, 0, max}] // Normal; Table[a[n], {n, 1, max}] /. SolveAlways[se == 0, x] // First (* _Jean-François Alcover_, Jan 31 2013, after _Sean A. Irvine_ *)
%Y Cf. A000309, A000356, A004304.
%K nonn,nice
%O 1,3
%A _N. J. A. Sloane_
%E Better definition from _Michael Albert_, Oct 24 2008
%E More terms from _Sean A. Irvine_, Apr 05 2010