login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of certain rooted planar maps.
(Formerly M2943 N1185)
2

%I M2943 N1185 #62 Oct 24 2024 12:33:55

%S 1,3,13,63,326,1761,9808,55895,324301,1908878,11369744,68395917,

%T 414927215,2535523154,15592255913,96419104103,599176447614,

%U 3739845108057,23435007764606,147374772979438,929790132901804,5883377105975922,37328490926964481,237427707464042693

%N Number of certain rooted planar maps.

%C a(n) is also the number of North-East lattice paths from (0,0) to (2n,n) that begin with a North step, end with an East step, and do not bounce off the line y =1/2 x. Similarly, also the number of paths that begin with an East step, end with a North step, and do not bounce off the line y=1/2 x. - _Michael D. Weiner_, Aug 03 2017

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Michael De Vlieger, <a href="/A000259/b000259.txt">Table of n, a(n) for n = 1..1211</a>

%H D. Birmajer, J. Gil, and M. Weiner, <a href="https://arxiv.org/abs/1707.09918"> Bounce statistics for rational lattice paths</a>, arXiv:1707.09918 [math.CO], 2017.

%H W. G. Brown, <a href="http://dx.doi.org/10.4153/CJM-1963-056-7">Enumeration of non-separable planar maps</a>, Canad. J. Math., 15 (1963), 526-545.

%H W. G. Brown, <a href="/A000087/a000087.pdf">Enumeration of non-separable planar maps</a> [Annotated scanned copy]

%H Anthony G. Shannon, Hakan Akkuş, Yeşim Aküzüm, Ömür Deveci, and Engin Özkan, <a href="https://doi.org/10.7546/nntdm.2024.30.3.530-537">A partial recurrence Fibonacci link</a>, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 530-537. See Table 2, p. 534.

%F a(n) = Sum_{k = 1..n} (-1)^(k-1)*C(3n, n-k)*k/n*F(k-2) where F(k) is the k-th Fibonacci number (A000045) and F(-1) = 1. - _Michael D. Weiner_, Aug 03 2017

%F a(n) ~ 3^(3*n + 1/2) / (5 * sqrt(Pi) * n^(3/2) * 2^(2*n - 1)). - _Vaclav Kotesovec_, Jul 06 2024

%e For n = 2 the a(2) = 3 is counting the following three paths EEEENN, EEENEN, ENEEEN. The path EENEEN is excluded as it bounces off the line y = (1/2) x at the point (2, 1). - _Michael D. Weiner_, Aug 03 2017

%p with(linalg): T := proc(n,k) if k<=n then k*add((2*j-k)*(j-1)!*(3*n-j-k-1)!/(j-k)!/(j-k)!/(2*k-j)!/(n-j)!,j=k..min(n,2*k))/(2*n-k)! else 0 fi end: A := matrix(30,30,T): seq(add(A[i,j],j=1..i),i=1..30); # _Emeric Deutsch_, Mar 03 2004

%p R := RootOf(x-t*(t-1)^2, t); ogf := series(1/((1-R-R^2)*(R-1)^2), x=0, 30); # _Mark van Hoeij_, Nov 08 2011

%t R = Root[#^3-2#^2+#-x&, 1]; CoefficientList[1/((1-R-R^2)*(R-1)^2) + O[x]^30, x] (* _Jean-François Alcover_, Feb 06 2016, after _Mark van Hoeij_ *)

%t Table[Sum[(-1)^(k - 1)*Binomial[3 n, n - k]*k/n*Fibonacci[k - 2], {k, n}], {n, 21}] (* _Michael De Vlieger_, Aug 04 2017 *)

%o (PARI) a(n) = sum(k = 1, n, (-1)^(k-1)*binomial(3*n,n-k)*k/n*fibonacci(k-2)); \\ _Michel Marcus_, Aug 04 2017

%o (Magma) [&+[(-1)^(k-1)*Binomial(3*n, n-k)*k/n*Fibonacci(k - 2):k in [0..n]]: n in [1..30]]; // _Vincenzo Librandi_, Aug 05 2017

%o (Python)

%o from sympy import binomial, fibonacci

%o def a(n): return sum((-1)**(k - 1)*binomial(3*n, n - k)*k//n*fibonacci(k - 2) for k in range(1, n + 1))

%o print([a(n) for n in range(1, 21)]) # _Indranil Ghosh_, Aug 05 2017

%Y Row sums of A046651.

%K nonn

%O 1,2

%A _N. J. A. Sloane_

%E More terms from _Emeric Deutsch_, Mar 03 2004