login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000226 Number of n-node unlabeled connected graphs with one cycle of length 3.
(Formerly M2668 N1066)
9

%I M2668 N1066

%S 1,1,3,7,18,44,117,299,793,2095,5607,15047,40708,110499,301541,825784,

%T 2270211,6260800,17319689,48042494,133606943,372430476,1040426154,

%U 2912415527,8167992598,22947778342,64577555147,182009003773,513729375064,1452007713130

%N Number of n-node unlabeled connected graphs with one cycle of length 3.

%C Number of rooted trees on n+1 nodes where root has degree 3. - _Christian G. Bower_

%C Third column of A033185. - _Michael Somos_, Aug 20 2018

%C From _Washington Bomfim_, Dec 22 2020: (Start)

%C Number of forests of 3 rooted trees with a total of n nodes.

%C Number of unicyclic graphs with a cycle of length 3 and a total of n nodes.

%C (End)

%D J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A000226/b000226.txt">Table of n, a(n) for n = 3..1000</a> (first 198 terms from Vincenzo Librandi)

%H Sergei Abramovich, <a href="http://www2.potsdam.edu/abramovs/publications_list.htm">Spreadsheets in Education (eJSiE): Vol. 5: Iss. 2, Article 1, p. 5</a>

%H Washington Bomfim, <a href="/A000226/a000226_1.png">Illustration of initial terms</a>

%H F. Ruskey, <a href="http://www.1stworks.com/ref/RuskeyCombGen.pdf">Combinatorial Generation, Eq.(4.27)</a>, 2003

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RootedTree.html">Rooted Tree</a>

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%F G.f.: (r(x)^3+3*r(x)*r(x^2)+2*r(x^3))/6 where r(x) is g.f. for rooted trees (A000081).

%F a(n) = Sum_{j1+2j2+···= n} (Product_{i=1..n} binomial(A000081(i) + j_i -1, j_i)) [(4.27) of [F. Ruskey] with n replaced by n+1]. - _Washington Bomfim_, Dec 22 2020

%F a(n) ~ (A187770 + A339986) * A051491^n / (2 * n^(3/2)). - _Vaclav Kotesovec_, Dec 25 2020

%p b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; unapply(add(b(k)*x^k, k=1..n),x) end: a:= n-> coeff(series((B(n-2)(x)^3+ 3*B(n-2)(x)* B(n-2)(x^2)+ 2*B(n-2)(x^3))/6, x=0, n+1), x,n): seq(a(n), n=3..40); # _Alois P. Heinz_, Aug 21 2008

%t terms = 30; r[_] = 0; Do[r[x_] = x *Exp[Sum[r[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms+3}]; A[x_] = (r[x]^3 + 3*r[x]*r[x^2] + 2*r[x^3])/6 + O[x]^(terms+3); Drop[CoefficientList[A[x], x], 3] (* _Jean-François Alcover_, Nov 23 2011, updated Jan 11 2018 *)

%o (PARI) seq(max_n) = {my(a = f = vector(max_n), s, D); f[1]=1;

%o for(j=1, max_n - 1, f[j+1] = 1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1]));

%o for(n=3,max_n,s=0;forpart(P=n,D=Set(P);if(#D==3,s+=f[P[1]]*f[P[2]]*f[P[3]];next());

%o if(#D==1, s+= binomial(f[P[1]]+2, 3); next());

%o if(P[1] == P[2], s += binomial(f[P[1]]+1, 2) * f[P[3]],

%o s += binomial(f[P[2]]+1, 2) * f[P[1]]),[1,n],[3,3]); a[n] = s ); a[3..max_n] }; \\ _Washington Bomfim_, Dec 22 2020

%Y Column 3 of A033185 and A217781.

%Y Cf. A000081, A001429.

%Y For n >= 3 a(n) = A217781(n, 3) = A058879(n, n-2) = A033185(n, 3).

%K nonn,nice

%O 3,3

%A _N. J. A. Sloane_

%E More terms from _Vladeta Jovovic_, Apr 19 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 11:15 EDT 2021. Contains 342845 sequences. (Running on oeis4.)