Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2049 N0811 #316 Nov 18 2024 16:38:31
%S 1,1,2,12,288,34560,24883200,125411328000,5056584744960000,
%T 1834933472251084800000,6658606584104736522240000000,
%U 265790267296391946810949632000000000,127313963299399416749559771247411200000000000,792786697595796795607377086400871488552960000000000000
%N Superfactorials: product of first n factorials.
%C a(n) is also the Vandermonde determinant of the numbers 1,2,...,(n+1), i.e., the determinant of the (n+1) X (n+1) matrix A with A[i,j] = i^j, 1 <= i <= n+1, 0 <= j <= n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001
%C a(n) = (1/n!) * D(n) where D(n) is the determinant of order n in which the (i,j)-th element is i^j. - _Amarnath Murthy_, Jan 02 2002
%C Determinant of S_n where S_n is the n X n matrix S_n(i,j) = Sum_{d|i} d^j. - _Benoit Cloitre_, May 19 2002
%C Appears to be det(M_n) where M_n is the n X n matrix with m(i,j) = J_j(i) where J_k(n) denote the Jordan function of row k, column n (cf. A059380(m)). - _Benoit Cloitre_, May 19 2002
%C a(2n+1) = 1, 12, 34560, 125411328000, ... is the Hankel transform of A000182 (tangent numbers) = 1, 2, 16, 272, 7936, ...; example: det([1, 2, 16, 272; 2, 16, 272, 7936; 16, 272, 7936, 353792; 272, 7936, 353792, 22368256]) = 125411328000. - _Philippe Deléham_, Mar 07 2004
%C Determinant of the (n+1) X (n+1) matrix whose i-th row consists of terms 1 to n+1 of the Lucas sequence U(i,Q), for any Q. When Q=0, the Vandermonde matrix is obtained. - _T. D. Noe_, Aug 21 2004
%C Determinant of the (n+1) X (n+1) matrix A whose elements are A(i,j) = B(i+j) for 0 <= i,j <= n, where B(k) is the k-th Bell number, A000110(k) [I. Mezo, JIS 14 (2011) # 11.1.1]. - _T. D. Noe_, Dec 04 2004
%C The Hankel transform of the sequence A090365 is A000178(n+1); example: det([1,1,3; 1,3,11; 3,11,47]) = 12. - _Philippe Deléham_, Mar 02 2005
%C Theorem 1.3, page 2, of Polynomial points, Journal of Integer Sequences, Vol. 10 (2007), Article 07.3.6, provides an example of an Abelian quotient group of order (n-1) superfactorial, for each positive integer n. The quotient is obtained from sequences of polynomial values. - E. F. Cornelius, Jr. (efcornelius(AT)comcast.net), Apr 09 2007
%C Starting with offset 1 this is a 'Matryoshka doll' sequence with alpha=1, the multiplicative counterpart to the additive A000292. seq(mul(mul(i,i=alpha..k), k=alpha..n),n=alpha..12). - _Peter Luschny_, Jul 14 2009
%C For n>0, a(n) is also the determinant of S_n where S_n is the n X n matrix, indexed from 1, S_n(i,j)=sigma_i(j), where sigma_k(n) is the generalized divisor sigma function: A000203 is sigma_1(n). - _Enrique Pérez Herrero_, Jun 21 2010
%C a(n) is the multiplicative Wiener index of the (n+1)-vertex path. Example: a(4)=288 because in the path on 5 vertices there are 3 distances equal to 2, 2 distances equal to 3, and 1 distance equal to 4 (2*2*2*3*3*4=288). See p. 115 of the Gutman et al. reference. - _Emeric Deutsch_, Sep 21 2011
%C a(n-1) = Product_{j=1..n-1} j! = V(n) = Product_{1 <= i < j <= n} (j - i) (a Vandermondian V(n), see the Ahmed Fares May 06 2001 comment above), n >= 1, is in fact the determinant of any n X n matrix M(n) with entries M(n;i,j) = p(j-1,x = i), 1 <= i, j <= n, where p(m,x), m >= 0, are monic polynomials of exact degree m with p(0,x) = 1. This is a special x[i] = i choice in a general theorem given in Vein-Dale, p. 59 (written for the transposed matrix M(n;j,x_i) = p(i-1,x_j) = P_i(x_j) in Vein-Dale, and there a_{k,k} = 1, for k=1..n). See the Aug 26 2013 comment under A049310, where p(n,x) = S(n,x) (Chebyshev S). - _Wolfdieter Lang_, Aug 27 2013
%C a(n) is the number of monotonic magmas on n elements labeled 1..n with a symmetric multiplication table. I.e., Product(i,j) >= max(i,j); Product(i,j) = Product(j,i). - _Chad Brewbaker_, Nov 03 2013
%C The product of the pairwise differences of n+1 integers is a multiple of a(n) [and this does not hold for any k > a(n)]. - _Charles R Greathouse IV_, Aug 15 2014
%C a(n) is the determinant of the (n+1) X (n+1) matrix M with M(i,j) = (n+j-1)!/(n+j-i)!, 1 <= i <= n+1, 1 <= j <= n+1. - _Stoyan Apostolov_, Aug 26 2014
%C All terms are in A064807 and all terms after a(2) are in A005101. - _Ivan N. Ianakiev_, Sep 02 2016
%C Empirical: a(n-1) is the determinant of order n in which the (i,j)-th entry is the (j-1)-th derivative of x^(x+i-1) evaluated at x=1. - _John M. Campbell_, Dec 13 2016
%C Empirical: If f(x) is a smooth, real-valued function on an open neighborhood of 0 such that f(0)=1, then a(n) is the determinant of order n+1 in which the (i,j)-th entry is the (j-1)-th derivative of f(x)/((1-x)^(i-1)) evaluated at x=0. - _John M. Campbell_, Dec 27 2016
%C Also the automorphism group order of the n-triangular honeycomb rook graph. - _Eric W. Weisstein_, Jul 14 2017
%C Is the zigzag Hankel transform of A000182. That is, a(2*n+1) is the Hankel transform of A000182 and a(2*n+2) is the Hankel transform of A000182(n+1). - _Michael Somos_, Mar 11 2020
%C Except for n = 0, 1, superfactorial a(n) is never a square (proof in link Mabry and Cormick, FFF 4 p. 349); however, when k belongs to A349079 (see for further information), there exists m, 1 <= m <= k such that a(k) / m! is a square. - _Bernard Schott_, Nov 29 2021
%D Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 545.
%D Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 135-145.
%D A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 231.
%D H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 53.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.
%H Boris Hostnik, <a href="/A000178/b000178.txt">Table of n, a(n) for n = 0..46</a>
%H Christian Aebi and Grant Cairns, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.122.5.433">Generalizations of Wilson's Theorem for Double-, Hyper-, Sub-and Superfactorials</a>, The American Mathematical Monthly 122.5 (2015): 433-443.
%H Andreas B. G. Blobel, <a href="https://arxiv.org/abs/2203.09519">On convolution powers of 1/x</a>, arXiv:2203.09519 [math.CO], 2022.
%H E. F. Cornelius, Jr. and Phill Schultz, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Schultz/schultz14.html">Polynomial points </a>, Journal of Integer Sequences, Vol. 10 (2007), Article 07.3.6.
%H Selden Crary, <a href="http://arxiv.org/abs/1406.6326">Factorization of the Determinant of the Gaussian-Covariance Matrix of Evenly Spaced Points Using an Inter-dimensional Multiset Duality</a>, arXiv preprint arXiv:1406.6326 [math.ST], 2014-2019.
%H N. Destainville, R. Mosseri and F. Bailly, <a href="http://dx.doi.org/10.1007/BF02181243">Configurational Entropy of Codimension-One Tilings and Directed Membranes</a>, J. Stat. Phys. 87, Nos 3/4, 697 (1997).
%H J. East and R. D. Gray, <a href="http://arxiv.org/abs/1404.2359">Idempotent generators in finite partition monoids and related semigroups</a>, arXiv preprint arXiv:1404.2359 [math.GR], 2014.
%H Richard Ehrenborg, <a href="http://www.jstor.org/stable/2589352">The Hankel determinant of exponential polynomials</a>, Amer. Math. Monthly, 107 (2000), 557-560.
%H William Q. Erickson and Jan Kretschmann, <a href="https://arxiv.org/abs/2311.07522">The structure and normalized volume of Monge polytopes</a>, arXiv:2311.07522 [math.CO], 2023. See p. 7.
%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/glshkn/glshkn.html">Glaisher-Kinkelin Constant</a> (gives asymptotic expressions for A002109, A000178) [Broken link]
%H Steven R. Finch, <a href="http://web.archive.org/web/20010622230958/http://www.mathsoft.com/asolve/constant/glshkn/glshkn.html">Glaisher-Kinkelin Constant</a> (gives asymptotic expressions for A002109, A000178) [From the Wayback machine]
%H Ivan Gutman, Wolfgang Linert, István Lukovits and Željko Tomović, <a href="http://dx.doi.org/10.1021/ci990060s">The multiplicative version of the Wiener index</a>, J. Chem. Inf. Comput. Sci., Vol. 40, No. 1 (2000), pp. 113-116.
%H Brady Haran and Sophie Maclean, <a href="https://www.youtube.com/watch?v=xV4A8oU3yew">What's special about 288?</a>, Numberphile video (2023).
%H Aoife Hennessy, <a href="http://repository.wit.ie/1693/1/AoifeThesis.pdf">A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths</a>, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
%H Nick Hobson, <a href="/A000178/a000178.py.txt">Python program for this sequence</a>.
%H A. M. Ibrahim, <a href="http://www.nntdm.net/papers/nntdm-19/NNTDM-19-2-30_42.pdf">Extension of factorial concept to negative numbers</a>, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, 2, 30-42.
%H Pavel L. Krapivsky, Jean-Marc Luck and Kirone Mallick, <a href="http://doi.org/10.1088/1742-5468/aaa79a">Quantum return probability of a system of N non-interacting lattice fermions</a>, Journal of Statistical Mechanics: Theory and Experiment, Vol. 2018, No. 2 (2018), 023104; <a href="https://arxiv.org/abs/1710.08178">arXiv preprint</a>, arXiv:1710.08178 [cond-mat.mes-hall], 2017-2018.
%H Jeffrey C. Lagarias and Harsh Mehta, <a href="https://doi.org/10.1142/S1793042116500044">Products of binomial coefficients and unreduced Farey fractions</a>, International Journal of Number Theory, Vol. 12, No. 1 (2016), pp. 57-91; <a href="http://arxiv.org/abs/1409.4145">arXiv preprint</a>, arXiv:1409.4145 [math.NT], 2014-2015.
%H Mogens Esrom Larsen, <a href="http://www.maa.org/programs/faculty-and-departments/classroom-capsules-and-notes/wronskian-harmony">Wronskian Harmony</a>, Mathematics Magazine, vol. 63, no. 1, 1990, pp. 33-37.
%H John W. Layman, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/LAYMAN/hankel.html">The Hankel Transform and Some of its Properties</a>, J. Integer Sequences, 4 (2001), #01.1.5.
%H Rick Mabry and Laura McCormick, <a href="https://www.austms.org.au/wp-content/uploads/Gazette/2009/Nov09/TechPaperMabry.pdf">Square products of punctured sequences of factorials</a>, Gaz. Aust. Math. Soc., 2009.
%H Rémy Mosseri and Francis Bailly, <a href="http://dx.doi.org/10.1142/S0217979293002419">Configurational Entropy in Octagonal Tiling Models</a>, Int. J. Mod. Phys. B, Vol. 7, No. 6-7 (1993), pp. 1427-1436.
%H Rémy Mosseri, F. Bailly and C. Sire, <a href="http://dx.doi.org/10.1016/0022-3093(93)90342-U">Configurational Entropy in Random Tiling Models</a>, J. Non-Cryst. Solids, Vol. 153-154 (1993), pp. 201-204.
%H Amarnath Murthy, <a href="http://vixra.org/abs/1403.0675">Miscellaneous Results and Theorems on Smarandache terms and factor partitions</a>, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
%H Amarnath Murthy and Charles Ashbacher, <a href="http://www.gallup.unm.edu/~smarandache/MurthyBook.pdf">Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences</a>, Hexis, Phoenix; USA 2005. See Section 3.14.
%H Christian Radoux, <a href="https://www.ams.org/journals/notices/197804/197804FullIssue.pdf">Query 145</a>, Notices Amer. Math. Soc., 25-3 (1978), p. 197.
%H Christian Radoux, <a href="http://www.mat.univie.ac.at/~slc/opapers/s28radoux.html">Déterminants de Hankel et théorème de Sylvester</a>, Séminaire Lotharingien de Combinatoire, B28b (1992), 9 pp.
%H Vignesh Raman, <a href="https://arxiv.org/abs/2012.00882">The Generalized Superfactorial, Hyperfactorial and Primorial functions</a>, arXiv:2012.00882 [math.NT], 2020.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BarnesG-Function.html">Barnes G-Function</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BellNumber.html">Bell Number</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FactorialProducts.html">Factorial Products</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphAutomorphism.html">Graph Automorphism</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LucasSequence.html">Lucas Sequence</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Superfactorial.html">Superfactorial</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/VandermondeDeterminant.html">Vandermonde Determinant</a>.
%H Bo Yang, Qingping Yang, and Runtao Liu, <a href="https://arxiv.org/abs/2411.07240">UTMath: Math Evaluation with Unit Test via Reasoning-to-Coding Thoughts</a>, arXiv:2411.07240 [cs.CL], 2024. See p. 4.
%H <a href="/index/Di#divseq">Index to divisibility sequences</a>.
%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>.
%H <a href="/index/O#Olympiads">Index to sequences related to Olympiads and other Mathematical competitions</a>.
%F a(0) = 1, a(n) = n!*a(n-1). - _Lee Hae-hwang_, May 13 2003, corrected by _Ilya Gutkovskiy_, Jul 30 2016
%F a(0) = 1, a(n) = 1^n * 2^(n-1) * 3^(n-2) * ... * n = Product_{r=1..n} r^(n-r+1). - _Amarnath Murthy_, Dec 12 2003 [Formula corrected by _Derek Orr_, Jul 27 2014]
%F a(n) = sqrt(A055209(n)). - _Philippe Deléham_, Mar 07 2004
%F a(n) = Product_{i=1..n} Product_{j=0..i-1} (i-j). - _Paul Barry_, Aug 02 2008
%F log a(n) = 0.5*n^2*log n - 0.75*n^2 + O(n*log n). - _Charles R Greathouse IV_, Jan 13 2012
%F Asymptotic: a(n) ~ exp(zeta'(-1) - 3/4 - (3/4)*n^2 - (3/2)*n)*(2*Pi)^(1/2 + (1/2)*n)*(n+1)^((1/2)*n^2 + n + 5/12). For example, a(100) is approx. 0.270317...*10^6941. (See A213080.) - _Peter Luschny_, Jun 23 2012
%F G.f.: 1 + x/(U(0) - x) where U(k) = 1 + x*(k+1)! - x*(k+2)!/U(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Oct 02 2012
%F G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 1/(1 + 1/((k+1)!*x*G(k+1)))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 14 2013
%F G.f.: 1 = Sum_{n>=0} a(n)*x^n / Product_{k=1..n+1} (1 + k!*x). - _Paul D. Hanna_, Oct 02 2013
%F A203227(n+1)/a(n) -> e, as n -> oo. - _Daniel Suteu_, Jul 30 2016
%F From _Ilya Gutkovskiy_, Jul 30 2016: (Start)
%F a(n) = G(n+2), where G(n) is the Barnes G-function.
%F a(n) ~ exp(1/12 - n*(3*n+4)/4)*n^(n*(n+2)/2 + 5/12)*(2*Pi)^((n+1)/2)/A, where A is the Glaisher-Kinkelin constant (A074962).
%F Sum_{n>=0} (-1)^n/a(n) = A137986. (End)
%F 0 = a(n)*a(n+2)^3 + a(n+1)^2*a(n+2)^2 - a(n+1)^3*a(n+3) for all n in Z (if a(-1)=1). - _Michael Somos_, Mar 11 2020
%F Sum_{n>=0} 1/a(n) = A287013 = 1/A137987. - _Amiram Eldar_, Nov 19 2020
%F a(n) = Wronskian(1, x, x^2, ..., x^n). - _Mohammed Yaseen_, Aug 01 2023
%F From _Andrea Pinos_, Apr 04 2024: (Start)
%F a(n) = e^(Sum_{k=1..n} (Integral_{x=1..k+1} Psi(x) dx)).
%F a(n) = e^(Integral_{x=1..n+1} (log(sqrt(2*Pi)) - (x-1/2) + x*Psi(x)) dx).
%F a(n) = e^(Integral_{x=1..n+1} (log(sqrt(2*Pi)) - (x-1/2) + (n+1)*Psi(x) - log(Gamma(x))) dx).
%F Psi(x) is the digamma function. (End)
%e a(3) = (1/6)* | 1 1 1 | 2 4 8 | 3 9 27 |
%e a(7) = n! * a(n-1) = 7! * 24883200 = 125411328000.
%e a(12) = 1! * 2! * 3! * 4! * 5! * 6! * 7! * 8! * 9! * 10! * 11! * 12!
%e = 1^12 * 2^11 * 3^10 * 4^9 * 5^8 * 6^7 * 7^6 * 8^5 * 9^4 * 10^3 * 11^2 * 12^1
%e = 2^56 * 3^26 * 5^11 * 7^6 * 11^2.
%e G.f. = 1 + x + 2*x^2 + 12*x^3 + 288*x^4 + 34560*x^5 + 24883200*x^6 + ...
%p A000178 := proc(n)
%p mul(i!,i=1..n) ;
%p end proc:
%p seq(A000178(n),n=0..10) ; # _R. J. Mathar_, Oct 30 2015
%t a[0] := 1; a[1] := 1; a[n_] := n!*a[n - 1]; Table[a[n], {n, 1, 12}] (* _Stefan Steinerberger_, Mar 10 2006 *)
%t Table[BarnesG[n], {n, 2, 14}] (* _Zerinvary Lajos_, Jul 16 2009 *)
%t FoldList[Times,1,Range[20]!] (* _Harvey P. Dale_, Mar 25 2011 *)
%t RecurrenceTable[{a[n] == n! a[n - 1], a[0] == 1}, a, {n, 0, 12}] (* _Ray Chandler_, Jul 30 2015 *)
%t BarnesG[Range[2, 20]] (* _Eric W. Weisstein_, Jul 14 2017 *)
%o (PARI) A000178(n)=prod(k=2,n,k!) \\ _M. F. Hasler_, Sep 02 2007
%o (PARI) a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, (1+j!*x+x*O(x^n)) )), n) \\ _Paul D. Hanna_, Oct 02 2013
%o (PARI) for(j=1,13, print1(prod(k=1,j,k^(j-k)),", ")) \\ _Hugo Pfoertner_, Apr 09 2020
%o (Maxima) A000178(n):=prod(k!,k,0,n)$ makelist(A000178(n),n,0,30); /* _Martin Ettl_, Oct 23 2012 */
%o (Ruby)
%o def mono_choices(a,b,n)
%o n - [a,b].max
%o end
%o def comm_mono_choices(n)
%o accum =1
%o 0.upto(n-1) do |i|
%o i.upto(n-1) do |j|
%o accum = accum * mono_choices(i,j,n)
%o end
%o end
%o accum
%o end
%o 1.upto(12) do |k|
%o puts comm_mono_choices(k)
%o end # _Chad Brewbaker_, Nov 03 2013
%o (Magma) [&*[Factorial(k): k in [0..n]]: n in [0..20]]; // _Bruno Berselli_, Mar 11 2015
%o (Python)
%o A000178_list, n, m = [1], 1,1
%o for i in range(1,100):
%o m *= i
%o n *= m
%o A000178_list.append(n) # _Chai Wah Wu_, Aug 21 2015
%o (Python)
%o from math import prod
%o def A000178(n): return prod(i**(n-i+1) for i in range(2,n+1)) # _Chai Wah Wu_, Nov 26 2023
%Y Partial products of A000142.
%Y Cf. A002109, A036561, A000292, A098694, A098695, A113271, A087316, A113208, A113231, A113257, A113258, A113320, A113336, A113498, A113173, A113170, A113475, A113492, A113497, A113533, A113534, A113535, A113153, A113154, A113122, A114045, A055462, A137986, A137987.
%Y A002109(n)*A000178(n-1) = (n!)^n = A036740(n) for n >= 1.
%Y A000178 is the Hankel transform (see A001906 for definition) of A000085, A000110, A000296, A005425, A005493, A005494 and A045379. - _John W. Layman_, Jul 28 2000
%Y Cf. A255322, A255358, A255359, A255360.
%Y Cf. A051675, A255321, A255323, A255344, A287013.
%Y Cf. A348692, A349079.
%K nonn,nice,easy
%O 0,3
%A _N. J. A. Sloane_