Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M1078 N0408 #26 Jun 05 2022 13:11:01
%S 0,1,2,4,7,14,23,42,76,139,258,482,907,1717,3269,6257,12020,23171,
%T 44762,86683,168233,327053,636837,1241723,2424228,4738426,9271299,
%U 18157441,35591647,69820626,137068908,269270450,529312241,1041093048,2048825748,4034059456
%N Number of positive integers <= 2^n of form 2 x^2 + 3 y^2.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H D. Shanks and L. P. Schmid, <a href="http://dx.doi.org/10.1090/S0025-5718-1966-0210678-1">Variations on a theorem of Landau. Part I</a>, Math. Comp., 20 (1966), 551-569.
%H <a href="/index/Qua#quadpop">Index entries for sequences related to populations of quadratic forms</a>
%e a(3)=4 since 2^3=8 and 2=2*1^2, 3=3*1^2, 5=2*1^2+3*1^2, 8=2*2^2.
%o (PARI) a(n)=if(n<0,0,sum(k=1,2^n,0<sum(y=0,sqrtint(k\3),issquare((k-3*y^2)/2))))
%o (Python)
%o import math
%o def A000075(n):
%o return len(set([2*x**2+3*y**2 for x in range(1+int(math.floor(2**((n-1)/2)))) for y in range(1+int(math.floor(math.sqrt((2**n-2*x**2)/3)))) if 0 < 2*x**2+3*y**2 <= 2**n]))
%o # _Chai Wah Wu_, Aug 20 2014
%Y Cf. A002480.
%K nonn
%O 0,3
%A _N. J. A. Sloane_