login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes dividing all Fibonacci sequences.
(Formerly M0856 N0326)
44

%I M0856 N0326 #96 Jun 18 2024 18:01:21

%S 2,3,7,23,43,67,83,103,127,163,167,223,227,283,367,383,443,463,467,

%T 487,503,523,547,587,607,643,647,683,727,787,823,827,863,883,887,907,

%U 947,983,1063,1123,1163,1187,1283,1303,1327,1367,1423,1447,1487,1543,1567,1583

%N Primes dividing all Fibonacci sequences.

%C Here a Fibonacci sequence is a sequence which begins with any two integers and continues using the rule s(n+2) = s(n+1) + s(n). These primes divide at least one number in each such sequence. - _Don Reble_, Dec 15 2006

%C Primes p such that the smallest positive m for which Fibonacci(m) == 0 (mod p) is m = p + 1. In other words, the n-th prime p is in this sequence iff A001602(n) = p + 1. - _Max Alekseyev_, Nov 23 2007

%C Cubre and Rouse comment that this sequence is not known to be infinite. - _Charles R Greathouse IV_, Jan 02 2013

%C Number of terms up to 10^n: 3, 7, 38, 249, 1894, 15456, 130824, 1134404, 10007875, 89562047, .... - _Charles R Greathouse IV_, Nov 19 2014

%C These are also the fixed points of sequence A213648 which gives the minimal number of 1's such that n*[n; 1,..., 1, n] = [x; ..., x], where [...] denotes simple continued fractions. - _M. F. Hasler_, Sep 15 2015

%C It appears that for n >= 2, all first differences are congruent to 0 (mod 4). - _Christopher Hohl_, Dec 28 2018

%C The comment above is equivalent to a(n) == 3 (mod 4) for n >= 2. This is indeed correct. Actually it can be proved that a(n) == 3, 7 (mod 20) for n >= 2. Let p != 2, 5 be a prime, then: A001175(p) divides (p - 1)/2 if p == 1, 9 (mod 20); p - 1 if p == 11, 19 (mod 20); (p + 1)/2 if p == 13, 17 (mod 20). So the remaining cases are p == 3, 7 (mod 20). - _Jianing Song_, Dec 29 2018

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Christian G. Bower and T. D. Noe, <a href="/A000057/b000057.txt">Table of n, a(n) for n = 1..1000</a>

%H U. Alfred, <a href="http://www.fq.math.ca/Scanned/2-1/alfred2.pdf">Primes which are factors of all Fibonacci sequences</a>, Fib. Quart., 2 (1964), 33-38.

%H B. Avila and T. Khovanova, <a href="http://arxiv.org/abs/1403.4614">Free Fibonacci Sequences</a>, arXiv preprint arXiv:1403.4614 [math.NT], 2014 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Avila/avila4.html">J. Int. Seq. 17 (2014) # 14.8.5</a>.

%H D. M. Bloom, <a href="http://www.jstor.org/stable/2315029">On periodicity in generalized Fibonacci sequences</a>, Am. Math. Monthly 72 (8) (1965) 856-861.

%H H. E. A. Campbell and David L. Wehlau, <a href="https://doi.org/10.1016/j.ffa.2023.102198">Zigzag polynomials, Artin's conjecture and trinomials</a>, Finite Fields and Their Applications (2023) Vol. 89, 102198.

%H Paul Cubre and Jeremy Rouse, <a href="http://arxiv.org/abs/1212.6221">Divisibility properties of the Fibonacci entry point</a>, arXiv:1212.6221 [math.NT], 2012.

%H Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibGen.html">General Fibonacci Series</a>.

%H Rishi Kumar, <a href="https://arxiv.org/abs/2406.05890">Kepler Sets of Second-Order Linear Recurrence Sequences Over Q_p</a>, arXiv:2406.05890 [math.NT], 2024. See pp. 2, 7.

%H N. J. A. Sloane, <a href="/A115004/a115004.txt">Families of Essentially Identical Sequences</a>, Mar 24 2021 (Includes this sequence).

%t Select[Prime[Range[1000]], Function[p, a=0; b=1; n=1; While[b != 0, t=b; b = Mod[(a+b), p]; a=t; n++]; n>p]] (* _Jean-François Alcover_, Aug 05 2018, after _Charles R Greathouse IV_ *)

%o (PARI) select(p->my(a=0,b=1,n=1,t);while(b,t=b;b=(a+b)%p; a=t; n++); n>p, primes(1000)) \\ _Charles R Greathouse IV_, Jan 02 2013

%o (PARI) is(p)=fordiv(p-1,d,if(((Mod([1,1;1,0],p))^d)[1,2]==0,return(0)));fordiv(p+1,d,if(((Mod([1,1;1,0],p))^d)[1,2]==0,return(d==p+1 && isprime(p)))) \\ _Charles R Greathouse IV_, Jan 02 2013

%o (PARI) is(p)=if((p-2)%5>1, return(0)); my(f=factor(p+1)); for(i=1, #f~, if((Mod([1, 1; 1, 0], p)^((p+1)/f[i, 1]))[1, 2]==0, return(0))); isprime(p) \\ _Charles R Greathouse IV_, Nov 19 2014

%Y Subsequence of A064414.

%Y Cf. A001175, A001602, A079346, A106535, A213648.

%K nonn

%O 1,1

%A _N. J. A. Sloane_

%E More terms from _Don Reble_, Nov 14 2006