login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Mersenne exponents: primes p such that 2^p - 1 is prime. Then 2^p - 1 is called a Mersenne prime.
(Formerly M0672 N0248)
681

%I M0672 N0248 #497 Dec 05 2024 15:37:46

%S 2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217,4253,

%T 4423,9689,9941,11213,19937,21701,23209,44497,86243,110503,132049,

%U 216091,756839,859433,1257787,1398269,2976221,3021377,6972593,13466917,20996011,24036583,25964951,30402457,32582657,37156667,42643801,43112609,57885161

%N Mersenne exponents: primes p such that 2^p - 1 is prime. Then 2^p - 1 is called a Mersenne prime.

%C Equivalently, integers k such that 2^k - 1 is prime.

%C It is believed (but unproved) that this sequence is infinite. The data suggest that the number of terms up to exponent N is roughly K log N for some constant K.

%C Length of prime repunits in base 2.

%C The associated perfect number N=2^(p-1)*M(p) (=A019279*A000668=A000396), has 2p (=A061645) divisors with harmonic mean p (and geometric mean sqrt(N)). - _Lekraj Beedassy_, Aug 21 2004

%C In one of his first publications Euler found the numbers up to 31 but erroneously included 41 and 47.

%C Equals number of bits in binary expansion of n-th Mersenne prime (A117293). - _Artur Jasinski_, Feb 09 2007

%C Number of divisors of n-th even perfect number, divided by 2. Number of divisors of n-th even perfect number that are powers of 2. Number of divisors of n-th even perfect number that are multiples of n-th Mersenne prime A000668(n). - _Omar E. Pol_, Feb 24 2008

%C Number of divisors of n-th even superperfect number A061652(n). Numbers of divisors of n-th superperfect number A019279(n), assuming there are no odd superperfect numbers. - _Omar E. Pol_, Mar 01 2008

%C Differences between exponents when the even perfect numbers are represented as differences of powers of 2, for example: The 5th even perfect number is 33550336 = 2^25 - 2^12 then a(5)=25-12=13 (see A135655, A133033, A090748). - _Omar E. Pol_, Mar 01 2008

%C Number of 1's in binary expansion of n-th even perfect number (see A135650). Number of 1's in binary expansion of divisors of n-th even perfect number that are multiples of n-th Mersenne prime A000668(n) (see A135652, A135653, A135654, A135655). - _Omar E. Pol_, May 04 2008

%C Indices of the numbers A006516 that are also even perfect numbers. - _Omar E. Pol_, Aug 30 2008

%C Indices of Mersenne numbers A000225 that are also Mersenne primes A000668. - _Omar E. Pol_, Aug 31 2008

%C The (prime) number p appears in this sequence if and only if there is no prime q<2^p-1 such that the order of 2 modulo q equals p; a special case is that if p=4k+3 is prime and also q=2p+1 is prime then the order of 2 modulo q is p so p is not a term of this sequence. - _Joerg Arndt_, Jan 16 2011

%C Primes p such that sigma(2^p) - sigma(2^p-1) = 2^p-1. - _Jaroslav Krizek_, Aug 02 2013

%C Integers k such that every degree k irreducible polynomial over GF(2) is also primitive, i.e., has order 2^k-1. Equivalently, the integers k such that A001037(k) = A011260(k). - _Geoffrey Critzer_, Dec 08 2019

%C Conjecture: for k > 1, 2^k-1 is (a Mersenne) prime or k = 2^(2^m)+1 (is a Fermat number) if and only if (k-1)^(2^k-2) == 1 (mod (2^k-1)k^2). - _Thomas Ordowski_, Oct 05 2023

%C Conjecture: for p prime, 2^p-1 is (a Mersenne) prime or p = 2^(2^m)+1 (is a Fermat number) if and only if (p-1)^(2^p-2) == 1 (mod 2^p-1). - _David Barina_, Nov 25 2024

%D T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 4.

%D J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.

%D R. K. Guy, Unsolved Problems in Number Theory, Section A3.

%D F. Lemmermeyer, Reciprocity Laws From Euler to Eisenstein, Springer-Verlag, 2000, p. 57.

%D Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 19.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D B. Tuckerman, The 24th Mersenne prime, Notices Amer. Math. Soc., 18 (Jun, 1971), Abstract 684-A15, p. 608.

%H David Wasserman, <a href="/A000043/b000043.txt">Table of n, a(n) for n = 1..48</a> [Updated by _N. J. A. Sloane_, Feb 06 2013, _Alois P. Heinz_, May 01 2014, Jan 11 2015, Dec 11 2016, _Ivan Panchenko_, Apr 07 2018, Apr 09 2018, _Benjamin Przybocki_, Jan 05 2022]

%H P. T. Bateman, J. L. Selfridge, and S. S. Wagstaff, Jr., <a href="http://www.jstor.org/stable/2323195">The new Mersenne conjecture</a>, Amer. Math. Monthly 96 (1989), no. 2, 125--128. MR0992073 (90c:11009).

%H J. Bernheiden, <a href="http://web.archive.org/web/20160412214003/http://www.mathe-schule.de/download/pdf/Primzahl/Mersenne.pdf">Mersenne Numbers (Text in German)</a>

%H Andrew R. Booker, <a href="https://t5k.org/nthprime/">The Nth Prime Page</a>

%H J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.

%H P. G. Brown, <a href="http://www.austms.org.au/Publ/Gazette/1997/Nov97/brown.html">A Note on Ramanujan's (FALSE) Conjectures Regarding 'Mersenne Primes'</a>

%H C. K. Caldwell, <a href="http://www.utm.edu/research/primes/mersenne/index.html">Mersenne Primes</a>

%H C. K. Caldwell, <a href="http://www.utm.edu/research/primes/largest.html#largest">Recent Mersenne primes</a>

%H Zuling Chang, Martianus Frederic Ezerman, Adamas Aqsa, Fahreza, San Ling, Janusz Szmidt, and Huaxiong Wang, <a href="https://www.researchgate.net/publication/316819419_Binary_de_Bruijn_Sequences_via_Zech&#39;s_Logarithms">Binary de Bruijn Sequences via Zech's Logarithms</a>, 2018.

%H Keith Conrad, <a href="https://kconrad.math.uconn.edu/blurbs/ugradnumthy/squaresandinfmanyprimes.pdf">Square patterns and infinitude of primes</a>, University of Connecticut, 2019.

%H H. Dubner, <a href="/A028491/a028491.pdf">Generalized repunit primes</a>, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]

%H Leonhard Euler, <a href="https://arxiv.org/abs/math/0501118">Observations on a theorem of Fermat and others on looking at prime numbers</a>, arXiv:math/0501118 [math.HO], 2005-2008.

%H Leonhard Euler, <a href="http://math.dartmouth.edu/~euler/pages/E026.html">Observationes de theoremate quodam Fermatiano aliisque ad numeros primos spectantibus</a>

%H G. Everest et al., <a href="http://arxiv.org/abs/math/0412079">Primes generated by recurrence sequences</a>, arXiv:math/0412079 [math.NT], 2006.

%H G. Everest et al., <a href="http://www.jstor.org/stable/27642221">Primes generated by recurrence sequences</a>, Amer. Math. Monthly, 114 (No. 5, 2007), 417-431.

%H F. Firoozbakht and M. F. Hasler, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Hasler/hasler2.html">Variations on Euclid's formula for Perfect Numbers</a>, JIS 13 (2010) #10.3.1.

%H Luis H. Gallardo and Olivier Rahavandrainy, <a href="https://arxiv.org/abs/1908.00106">On (unitary) perfect polynomials over F_2 with only Mersenne primes as odd divisors</a>, arXiv:1908.00106 [math.NT], 2019.

%H Donald B. Gillies, <a href="http://dx.doi.org/10.1090/S0025-5718-1964-0159774-6">Three new Mersenne primes and a statistical theory</a> Mathematics of Computation 18.85 (1964): 93-97.

%H GIMPS (Great Internet Mersenne Prime Search), <a href="http://www.mersenne.org/">Distributed Computing Projects</a>

%H GIMPS, <a href="http://www.mersenne.org/report_milestones/">Milestones Report</a>

%H GIMPS, <a href="http://mersenne.org/primes/press/M77232917.html">GIMPS Project discovers largest known prime number 2^77232917-1</a>

%H R. K. Guy, <a href="/A005165/a005165.pdf">The strong law of small numbers</a>. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]

%H Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k.2^n - 1 for k < 300</a>

%H H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a>

%H A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, <a href="http://www.cacr.math.uwaterloo.ca/hac/">Handbook of Applied Cryptography</a>, CRC Press, 1996; see p. 143.

%H R. Mestrovic, <a href="http://arxiv.org/abs/1202.3670">Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof</a>, arXiv preprint arXiv:1202.3670 [math.HO], 2012.

%H Romeo Meštrović, <a href="https://www.researchgate.net/publication/329844912_GOLDBACH-TYPE_CONJECTURES_ARISING_FROM_SOME_ARITHMETIC_PROGRESSIONS">Goldbach-type conjectures arising from some arithmetic progressions</a>, University of Montenegro, 2018.

%H Romeo Meštrović, <a href="https://arxiv.org/abs/1901.07882">Goldbach's like conjectures arising from arithmetic progressions whose first two terms are primes</a>, arXiv:1901.07882 [math.NT], 2019.

%H G. P. Michon, <a href="http://www.numericana.com/answer/numbers.htm#perfect">Perfect Numbers, Mersenne Primes</a>

%H Albert A. Mullin, <a href="http://www.jstor.org/stable/2323972">Letter to the editor</a>, about "The new Mersenne conjecture" [Amer. Math. Monthly 96 (1989), no. 2, 125-128; MR0992073 (90c:11009)] by P. T. Bateman, J. L. Selfridge and S. S. Wagstaff, Jr., Amer. Math. Monthly 96 (1989), no. 6, 511. MR0999415 (90f:11008).

%H Curt Noll and Laura Nickel, <a href="https://doi.org/10.1090/S0025-5718-1980-0583517-4">The 25th and 26th Mersenne primes</a>, Math. Comp. 35 (1980), 1387-1390.

%H M. Oakes, <a href="http://www.mail-archive.com/mersenne@base.com/msg05162.html">A new series of Mersenne-like Gaussian primes</a>

%H Ed Pegg, Jr., <a href="http://www.mathpuzzle.com/MAA/07-Sequence%20Pictures/mathgames_12_08_03.html">Sequence Pictures</a>, Math Games column, Dec 08 2003.

%H Ed Pegg, Jr., <a href="/A000043/a000043_2.pdf">Sequence Pictures</a>, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]

%H Omar E. Pol, <a href="http://www.polprimos.com">Determinacion geometrica de los numeros primos y perfectos</a>.

%H Maxie D. Schmidt, <a href="https://arxiv.org/abs/1701.04741">New Congruences and Finite Difference Equations for Generalized Factorial Functions</a>, arXiv:1701.04741 [math.CO], 2017.

%H N. J. A. Sloane, <a href="https://arxiv.org/abs/2301.03149">"A Handbook of Integer Sequences" Fifty Years Later</a>, arXiv:2301.03149 [math.NT], 2023, p. 5.

%H H. J. Smith, <a href="http://www.oocities.org/hjsmithh/Perfect/Mersenne.html">Mersenne Primes</a>

%H B. Tuckerman, <a href="http://www.pnas.org/content/68/10/2319.abstract">The 24th Mersenne prime</a>, Proc. Nat. Acad. Sci. USA, 68 (1971), 2319-2320.

%H H. S. Uhler, <a href="http://www.pnas.org/cgi/reprint/34/3/102.pdf">On All Of Mersenne's Numbers Particularly M_193</a>, PNAS 1948 34 (3) 102-103.

%H H. S. Uhler, <a href="http://www.pnas.org/cgi/reprint/30/10/314.pdf">First Proof That The Mersenne Number M_157 Is Composite</a>, PNAS 1944 30(10) 314-316.

%H S. S. Wagstaff, Jr., <a href="http://www.cerias.purdue.edu/homes/ssw/cun/index.html">The Cunningham Project</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CunninghamNumber.html">Cunningham Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IntegerSequencePrimes.html">Integer Sequence Primes</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MersennePrime.html">Mersenne Prime</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WagstaffsConjecture.html">Wagstaff's Conjecture</a>

%H David Whitehouse, <a href="http://news.bbc.co.uk/hi/english/sci/tech/newsid_1693000/1693364.stm">Number takes prime position</a> (2^13466917 - 1 found after 13000 years of computer time)

%H K. Zsigmondy, <a href="https://doi.org/10.1007/BF01692444">Zur Theorie der Potenzreste</a>, Monatshefte für Mathematik und Physik, Vol. 3, No. 1 (1892), 265-284.

%H <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a>

%H <a href="/index/Cor#core">Index entries for "core" sequences</a>

%F a(n) = log((1/2)*(1+sqrt(1+8*A000396(n))))/log(2). - _Artur Jasinski_, Sep 23 2008 (under the assumption there are no odd perfect numbers, _Joerg Arndt_, Feb 23 2014)

%F a(n) = A000005(A061652(n)). - _Omar E. Pol_, Aug 26 2009

%F a(n) = A000120(A000396(n)), assuming there are no odd perfect numbers. - _Omar E. Pol_, Oct 30 2013

%F a(n) = A260073(A000396(n)) + 1, again assuming there are no odd perfect numbers. Also, a(n) = A050475(n) - 1. - _Juri-Stepan Gerasimov_, Aug 29 2015

%e Corresponding to the initial terms 2, 3, 5, 7, 13, 17, 19, 31 ... we get the Mersenne primes 2^2 - 1 = 3, 2^3 - 1 = 7, 2^5 - 1 = 31, 127, 8191, 131071, 524287, 2147483647, ... (see A000668).

%t MersennePrimeExponent[Range[48]] (* _Eric W. Weisstein_, Jul 17 2017; updated Oct 21 2024 *)

%o (PARI) isA000043(n) = isprime(2^n-1) \\ _Michael B. Porter_, Oct 28 2009

%o (PARI) is(n)=my(h=Mod(2,2^n-1)); for(i=1, n-2, h=2*h^2-1); h==0||n==2 \\ Lucas-Lehmer test for exponent e. - _Joerg Arndt_, Jan 16 2011, and _Charles R Greathouse IV_, Jun 05 2013

%o forprime(e=2,5000,if(is(e),print1(e,", "))); /* terms < 5000 */

%o (Python)

%o from sympy import isprime, prime

%o for n in range(1,100):

%o if isprime(2**prime(n)-1):

%o print(prime(n), end=', ') # _Stefano Spezia_, Dec 06 2018

%Y Cf. A000668 (Mersenne primes).

%Y Cf. A028335 (integer lengths of Mersenne primes).

%Y Cf. A000225 (Mersenne numbers).

%Y Cf. A001348 (Mersenne numbers with n prime).

%Y Cf. A016027, A046051, A057429, A057951-A057958, A066408, A117293, A127962, A127963, A127964, A127965, A127961, A000979, A000978, A124400, A124401, A127955, A127956, A127957, A127958, A127936, A134458, A000225, A000396, A090748, A133033, A135655, A006516, A019279, A061652, A133033, A135650, A135652, A135653, A135654, A260073, A050475.

%K hard,nonn,nice,core

%O 1,1

%A _N. J. A. Sloane_

%E Also in the sequence: p = 74207281. - _Charles R Greathouse IV_, Jan 19 2016

%E Also in the sequence: p = 77232917. - _Eric W. Weisstein_, Jan 03 2018

%E Also in the sequence: p = 82589933. - _Gord Palameta_, Dec 21 2018

%E a(46) = 42643801 and a(47) = 43112609, whose ordinal positions in the sequence are now confirmed, communicated by _Eric W. Weisstein_, Apr 12 2018

%E a(48) = 57885161, whose ordinal position in the sequence is now confirmed, communicated by _Benjamin Przybocki_, Jan 05 2022

%E Also in the sequence: p = 136279841. - _Eric W. Weisstein_, Oct 21 2024