login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006551
Maximal Eulerian numbers.
(Formerly M3426)
6
1, 1, 4, 11, 66, 302, 2416, 15619, 156190, 1310354, 15724248, 162512286, 2275172004, 27971176092, 447538817472, 6382798925475, 114890380658550, 1865385657780650, 37307713155613000, 679562217794156938, 14950368791471452636
OFFSET
1,3
COMMENTS
From Peter Luschny, Aug 08 2010: (Start)
Define A(n,k) as the number of permutations of {1,2,..,n} with k ascents.
A(n,k) = sum_{j=0}^k (-1)^j binomial(n+1,j)(k-j+1)^n.
Then a(n) = A(n, floor(n/2)). The Digital Library of Mathematical Functions calls the A(n,k) Eulerian numbers. With this terminology a(n) are the middle Eulerian numbers and A180056 the central Eulerian numbers. (End)
Number of permutations of {1,2,..,n} with floor(n/2) descents. - Joerg Arndt, Aug 15 2014
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Digital Library of Mathematical Functions, Table 26.14.1 [Peter Luschny, Aug 08 2010]
Herman Chau, On Enumerating Higher Bruhat Orders Through Deletion and Contraction, arXiv:2412.10532 [math.CO], 2024. See p. 20.
L. Lesieur and J.-N. Nicolas, On the Eulerian numbers M_n = max_{1<=k<=n} A(n,k), European J. Combin., 13 (1992), 379-399.
FORMULA
a(n) = sum_{0<=j<=floor(n/2)} (-1)^j binomial(n+1,j) (floor(n/2)-j+1)^n. [Peter Luschny, Aug 08 2010]
a(n+1)/a(n) ~ n. - Ran Pan, Oct 26 2015
a(n) ~ 2 * sqrt(3) * n^n / exp(n). - Vaclav Kotesovec, Oct 28 2021
MAPLE
a := proc(n) local j, k; k := iquo(n, 2);
add((-1)^j*binomial(n+1, j)*(k-j+1)^n, j=0..k) end:
# Peter Luschny, Aug 08 2010
# Computation by recursion:
A006551 := proc(r) local W; W := proc(m) local A, n, k;
A:=[seq(1, n=1..m)]; if m < 2 then RETURN(1) fi;
for n from 2 to m-1 do for k from 2 to m do
A[k] := n*A[k-1]+k*A[k] od od; [A[m-1], A[m]] end:
W((r+2+irem(r, 2))/2)[2-irem(r, 2)] end:
# Peter Luschny, Jan 12 2011
MATHEMATICA
a[n_] := With[{k = Quotient[n, 2]}, Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k}]]; Array[a, 25] (* Jean-François Alcover, Feb 19 2017, after Peter Luschny *)
CROSSREFS
Cf. A008292. Bisections are A025585 and A180056.
Sequence in context: A266386 A134823 A000880 * A353819 A274960 A151826
KEYWORD
nonn,changed
STATUS
approved