login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060818
a(n) = 2^(n - HammingWeight(n)) = 2^(n - BitCount(n)) = 2^(n - A000120(n)).
32
1, 1, 2, 2, 8, 8, 16, 16, 128, 128, 256, 256, 1024, 1024, 2048, 2048, 32768, 32768, 65536, 65536, 262144, 262144, 524288, 524288, 4194304, 4194304, 8388608, 8388608, 33554432, 33554432, 67108864, 67108864, 2147483648, 2147483648, 4294967296
OFFSET
0,3
COMMENTS
a(n) is the size of the Sylow 2-subgroup of the symmetric group S_n.
Also largest power of 2 which is a factor of n! and (apart from a(3)) the largest perfect power which is a factor of n!.
Denominator of e(n,n) (see Maple line).
Denominator of the coefficient of x^n in n-th Legendre polynomial; numerators are in A001790. - Benoit Cloitre, Nov 29 2002
LINKS
Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, 87(2) (2014), 135-143.
V. H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49(3) (2002), 311-317.
Eric Weisstein's World of Mathematics, Random Walk 1-Dimensional.
Eric Weisstein's World of Mathematics, Legendre Polynomial.
FORMULA
a(n) = 2^(floor(n/2) + floor(n/4) + floor(n/8) + floor(n/16) + ...).
a(n) = 2^(A011371(n)).
a(n) = gcd(n!, 2^n). - Labos Elemer, Apr 22 2003
a(n) = denominator(L(n)) with rational L(n):=binomial(2*n,n)/2^n. L(n) is the leading coefficient of the Legendre polynomial P_n(x).
L(n) = (2*n-1)!!/n!, with the double factorial (2*n-1)!! = A001147(n), n>=0.
a(n) = Product_{i=1..n} A006519(i). - Tom Edgar, Apr 30 2014
a(n) = (n! XOR floor(n!/2)) XOR (n!-1 XOR floor((n!-1)/2)). - Gary Detlefs, Jun 13 2014
a(n) = denominator(Catalan(n-1)/2^(n-1)) for n>0. - Vincenzo Librandi, Sep 01 2014
a(2*n) = a(2*n+1) = 2^n*a(n). - Robert Israel, Sep 01 2014
a(n) = n!*A063079(n+1)/A334907(n). - Petros Hadjicostas, May 16 2020
EXAMPLE
G.f. = 1 + x + 2*x^2 + 2*x^3 + 8*x^4 + 8*x^5 + 16*x^6 + 16*x^7 + 128*x^8 + ...
e(n,n) sequence begins 1, 1, 3/2, 5/2, 35/8, 63/8, 231/16, 429/16, 6435/128, 12155/128, 46189/256, ... .
MAPLE
e := proc(l, m) local k; add(2^(k-2*m) * binomial(2*m-2*k, m-k) * binomial(m+k, m) * binomial(k, l), k=l..m); end;
A060818 := proc(n) option remember; `if`(n=0, 1, 2^(padic[ordp](n, 2))*A060818(n-1)) end: seq(A060818(i), i=0..34); # Peter Luschny, Nov 16 2012
HammingWeight := n -> add(convert(n, base, 2)):
seq(2^(n - HammingWeight(n)), n = 0..34); # Peter Luschny, Mar 23 2024
MATHEMATICA
Table[GCD[w!, 2^w], {w, 100}]
(* Second program, more efficient *)
Array[2^(# - DigitCount[#, 2, 1]) &, 35, 0] (* Michael De Vlieger, Mar 23 2024 *)
PROG
(PARI) {a(n) = denominator( polcoeff( pollegendre(n), n))};
(PARI) {a(n) = if( n<0, 0, 2^sum(k=1, n, n\2^k))};
(PARI) { for (n=0, 200, s=0; d=2; while (n>=d, s+=n\d; d*=2); write("b060818.txt", n, " ", 2^s); ) } \\ Harry J. Smith, Jul 12 2009
(Sage)
def A060818(n):
A005187 = lambda n: A005187(n//2) + n if n > 0 else 0
return 2^A005187(n//2)
[A060818(i) for i in (0..34)] # Peter Luschny, Nov 16 2012
(Magma) [1] cat [Denominator(Catalan(n)/2^n): n in [0..50]]; // Vincenzo Librandi, Sep 01 2014
(Python 3.10+)
def A060818(n): return 1<<n-n.bit_count() # Chai Wah Wu, Jul 11 2022
CROSSREFS
a(n) = A046161([n/2]).
Row sums of triangle A100258.
Sequence in context: A058524 A072576 A271342 * A082887 A137583 A099328
KEYWORD
nonn,easy,frac
AUTHOR
Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 29 2001
EXTENSIONS
Additional comments from Henry Bottomley, May 01 2001
New name from Peter Luschny, Mar 23 2024
STATUS
approved