login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007778
a(n) = n^(n+1).
67
0, 1, 8, 81, 1024, 15625, 279936, 5764801, 134217728, 3486784401, 100000000000, 3138428376721, 106993205379072, 3937376385699289, 155568095557812224, 6568408355712890625, 295147905179352825856, 14063084452067724991009, 708235345355337676357632
OFFSET
0,3
COMMENTS
Number of edges of the complete bipartite graph of order n+n^n, K_n,n^n. - Roberto E. Martinez II, Jan 07 2002
All rational solutions to the equation x^y = y^x, with x < y, are given by x = A000169(n+1)/A000312(n), y = A000312(n+1)/A007778(n), where n >= 1. - Nick Hobson, Nov 30 2006
a(n) is also the number of ways of writing an n-cycle as the product of n+1 transpositions. - Nikos Apostolakis, Nov 22 2008
a(n) is the total number of elements whose preimage is the empty set summed over all partial functions from [n] into [n]. - Geoffrey Critzer, Jan 12 2022
REFERENCES
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 67.
LINKS
Nick Hobson, Exponential equation.
Yidong Sun and Jujuan Zhuang, lambda-factorials of n, arXiv:1007.1339 [math.CO], 2010. - Peter Luschny, Jul 09 2010
FORMULA
E.g.f.: -W(-x)/(1 + W(-x))^3, W(x) Lambert's function (principal branch).
a(n) = Sum_{k=0..n} binomial(n,k)*A000166(k+1)*(n+1)^(n-k). - Peter Luschny, Jul 09 2010
See A008517 and A134991 for similar e.g.f.s. and A048993. - Tom Copeland, Oct 03 2011
E.g.f.: d/dx {x/(T(x)*(1-T(x))}, where T(x) = Sum_{n >= 1} n^(n-1)*x^n/n! is the tree function of A000169. - Peter Bala, Aug 05 2012
a(n) = n*A000312(n). - R. J. Mathar, Jan 12 2017
Sum_{n>=2} 1/a(n) = A135608. - Amiram Eldar, Nov 17 2020
MAPLE
seq( n^(n+1), n=0..20); # G. C. Greubel, Mar 05 2020
MATHEMATICA
Table[n^(n+1), {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Oct 01 2008 *)
PROG
(Magma) [n^(n+1):n in [0..20]]; // Vincenzo Librandi, Jan 03 2012
(Maxima) A007778[n]:=n^(n+1)$
makelist(A007778[n], n, 0, 30); /* Martin Ettl, Oct 29 2012 */
(PARI) vector(21, n, my(m=n-1); m^(m+1)) \\ G. C. Greubel, Mar 05 2020
(Sage) [n^(n+1) for n in (0..20)] # G. C. Greubel, Mar 05 2020
CROSSREFS
Essentially the same as A065440.
Cf. A061250, A143857. [From Reinhard Zumkeller, Jul 23 2010]
Sequence in context: A068617 A207994 A210127 * A065440 A338694 A318047
KEYWORD
nonn,easy
STATUS
approved