login
A042013
Denominators of continued fraction convergents to sqrt(530).
3
1, 46, 2117, 97428, 4483805, 206352458, 9496696873, 437054408616, 20113999493209, 925681031096230, 42601441429919789, 1960591986807406524, 90229832834570619893, 4152532902377055921602, 191106743342179143013585, 8795062726642617634546512
OFFSET
0,2
COMMENTS
From Michael A. Allen, Dec 02 2023: (Start)
Also called the 46-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 46 kinds of squares available. (End)
LINKS
FORMULA
a(n) = F(n, 46), the n-th Fibonacci polynomial evaluated at x=46. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 46*a(n-1) + a(n-2) for n > 1; a(0)=1, a(1)=46.
G.f.: 1/(1-46*x-x^2). (End)
MATHEMATICA
Denominator[Convergents[Sqrt[530], 40]] (* Vincenzo Librandi, Jan 12 2014 *)
CROSSREFS
Row n=46 of A073133, A172236 and A352361 and column k=46 of A157103.
Sequence in context: A264525 A223971 A009990 * A333718 A234153 A123830
KEYWORD
nonn,frac,easy
EXTENSIONS
Additional term from Colin Barker, Nov 29 2013
STATUS
approved