login
A041841
Denominators of continued fraction convergents to sqrt(442).
3
1, 42, 1765, 74172, 3116989, 130987710, 5504600809, 231324221688, 9721121911705, 408518444513298, 17167495791470221, 721443341686262580, 30317787846614498581, 1274068532899495202982, 53541196169625413023825, 2250004307657166842203632
OFFSET
0,2
COMMENTS
From Michael A. Allen, Aug 08 2023: (Start)
Also called the 42-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 42 kinds of squares available. (End)
LINKS
FORMULA
a(n) = F(n, 42), the n-th Fibonacci polynomial evaluated at x=42. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 42*a(n-1) + a(n-2) for n > 1; a(0)=1, a(1)=42.
G.f.: 1/(1 - 42*x - x^2).
(End)
MATHEMATICA
a=0; lst={}; s=0; Do[a=s-(a-1); AppendTo[lst, a]; s+=a*42, {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
Denominator[Convergents[Sqrt[442], 30]] (* Vincenzo Librandi, Dec 25 2013 *)
CROSSREFS
Row n=42 of A073133, A172236 and A352361 and column k=42 of A157103.
Sequence in context: A207716 A208077 A009986 * A236270 A216703 A258393
KEYWORD
nonn,frac,easy
EXTENSIONS
Additional term from Colin Barker, Nov 25 2013
STATUS
approved