login
A041365
Denominators of continued fraction convergents to sqrt(197).
3
1, 28, 785, 22008, 617009, 17298260, 484968289, 13596410352, 381184458145, 10686761238412, 299610499133681, 8399780736981480, 235493471134615121, 6602216972506204868, 185097568701308351425, 5189334140609140044768
OFFSET
0,2
COMMENTS
From Michael A. Allen, May 16 2023: (Start)
Also called the 28-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 28 kinds of squares available. (End)
LINKS
FORMULA
a(n) = F(n, 28), the n-th Fibonacci polynomial evaluated at x=28. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 28*a(n-1) + a(n-2), n > 1; a(0)= 1, a(1)=28.
G.f.: 1/(1-28*x-x^2). (End)
MATHEMATICA
a=0; lst={}; s=0; Do[a=s-(a-1); AppendTo[lst, a]; s+=a*28, {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 27 2009 *)
Denominator[Convergents[Sqrt[197], 30]] (* Vincenzo Librandi, Dec 16 2013 *)
LinearRecurrence[{28, 1}, {1, 28}, 20] (* Harvey P. Dale, Mar 07 2021 *)
CROSSREFS
Row n=28 of A073133, A172236 and A352361 and column k=28 of A157103.
Sequence in context: A267732 A009972 A114037 * A042514 A158659 A214133
KEYWORD
nonn,frac,easy
EXTENSIONS
Additional term from Colin Barker, Nov 16 2013
STATUS
approved