login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378424
Product_{n>=1} (1+x^n)^a(n) = Sum_{k>=0} C(k)*x^k, where C(k) = A000108(k).
0
1, 2, 3, 10, 25, 78, 245, 810, 2700, 9250, 32065, 112710, 400023, 1432858, 5170575, 18784170, 68635477, 252088416, 930138521, 3446167850, 12815663595, 47820447026, 178987624513, 671825132838, 2528212128750, 9536895064398, 36054433807398, 136583761444354, 518401146543811, 1971076361996550, 7506908923471953, 28634752211620266
OFFSET
1,2
COMMENTS
Conjecture: A327937(n) divides a(n).
FORMULA
Inverse Euler transform of A179277.
PROG
(PARI)
A179277(n) = if(n<=1, 1, sum(k=0, floor(n/2), A179277(k)*binomial(2*n-4*k, n-2*k)/(n-2*k+1)))
a(max_n) = {my(va, vb, vc); vc=va=vector(max_n); vb = vector(max_n, k, A179277(k)); for(k=1, max_n, vc[k]=k*vb[k]-sum(m=1, k-1, vc[m]*vb[k-m])); for(k=1, max_n, va[k]=1/k*sumdiv(k, m, moebius(k/m)*vc[m])); va; }
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Thomas Scheuerle, Nov 26 2024
STATUS
approved