login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A377606
Decimal expansion of -30*arcsin((5 - 4*sqrt(5))/15).
1
7, 9, 8, 2, 4, 0, 1, 4, 1, 6, 7, 8, 4, 8, 0, 7, 4, 1, 7, 2, 1, 6, 2, 1, 2, 8, 5, 0, 5, 6, 3, 1, 8, 8, 8, 0, 1, 0, 3, 9, 0, 6, 5, 7, 9, 2, 8, 4, 7, 8, 0, 2, 8, 0, 6, 9, 4, 0, 4, 9, 2, 0, 8, 2, 2, 4, 8, 6, 3, 1, 0, 6, 5, 0, 3, 0, 7, 6, 3, 0, 0, 4, 8, 4, 6, 4, 9, 3, 7, 1
OFFSET
1,1
COMMENTS
Dehn invariant of an icosidodecahedron with unit edge length and (negated) of a (small) rhombicosidodecahedron with unit edge length.
LINKS
Eric Weisstein's World of Mathematics, Dehn Invariant.
Eric Weisstein's World of Mathematics, Icosidodecahedron.
Eric Weisstein's World of Mathematics, Small Rhombicosidodecahedron.
FORMULA
Equals -30*arcsin((5 - 4*A002163)/15) = -30*arcsin((5 - A010532)/15).
EXAMPLE
7.9824014167848074172162128505631888010390657928...
MATHEMATICA
First[RealDigits[-30*ArcSin[(5 - Sqrt[80])/15], 10, 100]] (* or *)
First[RealDigits[PolyhedronData["Icosidodecahedron", "DehnInvariant"], 10, 100]]
PROG
(PARI) 30*asin((4*sqrt(5)-5)/15) \\ Charles R Greathouse IV, Nov 21 2024
CROSSREFS
Sequence in context: A342571 A372253 A256924 * A348668 A259069 A209328
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Nov 03 2024
STATUS
approved