login
A376736
a(n) is the numerator of the expected number of random moves of a chess knight to reach a position outside an nXn chessboard, starting in one of the corners.
5
1, 1, 4, 62, 269, 1766, 395497, 101338, 44125237, 227721959, 3361699348115, 483866477194862, 277887411827604127, 790848403160840410, 2785714552717079970073201, 89715505143567836216964174, 2034961072108249587083318018747, 457177774768288408431166142758841, 1085703228381446052419019696184520372520
OFFSET
1,3
COMMENTS
The piece does not pay attention to its position and will fall off the board if it makes a move beyond the edge of the board.
EXAMPLE
1, 1, 4/3, 62/43, 269/167, 1766/1017, 395497/213488, 101338/51901, 44125237/21578387, 227721959/106983448, ...
Approximately 1, 1, 1.333, 1.442, 1.611, 1.736, 1.853, 1.953, 2.045, 2.129, 2.206, ...
PROG
(PARI) \\ Uses function droprob from A376606
knightmoves = [[2, 1], [1, 2], [-1, 2], [-2, 1], [-2, -1], [-1, -2], [1, -2], [2, -1]];
a376736(n) = numerator(droprob(n, knightmoves, 8))
CROSSREFS
A376737 are the corresponding denominators.
A376606 and A376607 are similar for a rook walk with unit steps.
A376609 and A376610 are similar for a chess king.
Sequence in context: A304176 A326225 A102193 * A232156 A316391 A293968
KEYWORD
nonn,frac
AUTHOR
Hugo Pfoertner, Oct 03 2024
STATUS
approved