

A003192


Length of uncrossed knight's path on n X n board.
(Formerly M1369)


2




OFFSET

1,3


COMMENTS

I used ZDD techniques to show that a(9)=47. (This is the longest uncrossed knight path on a 9 X 9 board; thus I confirmed the conjecture that the paths of length 47, found by hand long ago, are indeed optimum.)  Don Knuth, Jun 24 2010


REFERENCES

D. E. Knuth, Long and skinny knight's tours, in Selected Papers on Fun and Games, CSLI, Stanford, CA, 2010. (CSLI Lecture Notes, vol. 192)
J. S. Madachy, Letter to N. J. A. Sloane, Apr 26 1975.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Various authors, Uncrossed knight's tours, J. Rec. Math., 2 (1969), 154157.
L. D. Yarbrough, Uncrossed knight's tours, J. Rec. Math., 1 (No. 3, 1969), 140142.


LINKS

Table of n, a(n) for n=1..9.
George Jelliss, NonIntersecting Paths
J. S. Madachy, Letter to N. J. A. Sloane, Apr 26 1975.
JeanCharles Meyrignac, Noncrossing knight tours
N. J. A. Sloane, Illustration of initial terms
Various authors, Uncrossed knight's tours, J. Rec. Math., 2 (1969), 154157. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Knight's Tour
L. D. Yarbrough, Uncrossed knight's tours, J. Rec. Math., 1 (No. 3, 1969), 140142. [Annotated scanned copy]


EXAMPLE

Lengths of longest uncrossed knight paths on all sufficiently small rectangular boards m X n, with 3 <=m <= n:
......2...4...5...6...8...9..10
..........5...7...9..11..13..15
.............10..14..16..19..22
.................17..21..25..29
.....................24..30..35
.........................35..42
.............................47


CROSSREFS

Cf. A157416.
Sequence in context: A030723 A077166 A230429 * A018682 A078393 A100292
Adjacent sequences: A003189 A003190 A003191 * A003193 A003194 A003195


KEYWORD

nonn,nice,more,hard


AUTHOR

N. J. A. Sloane


EXTENSIONS

a(1)=a(2)=0 prepended by Max Alekseyev, Jul 17 2011


STATUS

approved



