login
A375587
Expansion of e.g.f. 1 / (1 + x - x * exp(x^3/6)).
2
1, 0, 0, 0, 4, 0, 0, 70, 1120, 0, 2800, 184800, 2217600, 200200, 39239200, 1513512000, 16166550400, 11435424000, 1029188160000, 31290941281600, 317363510464000, 821292151680000, 52198475641312000, 1387554839326656000, 14092570281613824000, 92349968764253200000
OFFSET
0,5
FORMULA
a(n) = n! * Sum_{k=0..floor(n/3)} (n-3*k)! * Stirling2(k,n-3*k)/(6^k*k!).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x-x*exp(x^3/6))))
(PARI) a(n) = n!*sum(k=0, n\3, (n-3*k)!*stirling(k, n-3*k, 2)/(6^k*k!));
CROSSREFS
Cf. A375556.
Sequence in context: A054376 A375592 A351156 * A375556 A369379 A358292
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 19 2024
STATUS
approved