OFFSET
0,5
FORMULA
a(0) = 1; a(n) = (n-1)! * Sum_{k=2..floor((n+2)/3)} (3*k-2)/((k-1) * 6^(k-1)) * a(n-3*k+2)/(n-3*k+2)!.
a(n) = n! * Sum_{k=0..floor(n/3)} |Stirling1(k,n-3*k)|/(6^k*k!).
a(n) ~ sqrt(2*Pi) * n^(n - 1/2 + 6^(1/3)) / (Gamma(6^(1/3)) * 3^(6^(1/3)) * exp(n) * 6^(n/3)). - Vaclav Kotesovec, May 04 2022
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^3/6)^(-x)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x*log(1-x^3/6))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=2, (i+2)\3, (3*j-2)/((j-1)*6^(j-1))*v[i-3*j+3]/(i-3*j+2)!)); v;
(PARI) a(n) = n!*sum(k=0, n\3, abs(stirling(k, n-3*k, 1))/(6^k*k!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 02 2022
STATUS
approved