login
A371529
Decimal expansion of Product_{k>=2} (1 + (-1)^k/Lucas(k)).
5
1, 0, 7, 2, 4, 8, 2, 7, 1, 7, 7, 5, 5, 1, 3, 0, 6, 2, 5, 8, 8, 5, 3, 7, 8, 8, 1, 6, 5, 2, 6, 6, 0, 8, 6, 9, 3, 0, 4, 3, 9, 2, 0, 4, 9, 3, 3, 3, 0, 9, 9, 2, 3, 6, 1, 3, 8, 5, 3, 2, 8, 7, 0, 9, 3, 9, 5, 9, 7, 6, 0, 7, 4, 3, 7, 7, 8, 3, 0, 4, 2, 5, 6, 5, 5, 8, 2, 3, 8, 9, 8, 1, 3, 1, 1, 4, 4, 8, 4, 0, 6, 4, 8, 4, 6
OFFSET
1,3
LINKS
Daniel Duverney, Carsten Elsner, Masanobu Kaneko, and Yohei Tachiya, A criterion of algebraic independence of values of modular functions and an application to infinite products involving Fibonacci and Lucas numbers, Research in Number Theory, Vol. 8 (2022), Article 31; alternative link.
Eric Weisstein's World of Mathematics, Dedekind Eta Function.
FORMULA
Equals Product_{k>=2} (1 + (-1)^k/A000032(k)).
Equals A371525 / (2*sqrt(5)).
Equals (phi^(1/4) / sqrt(5)) * eta(2*tau_0)^3 * eta(3*tau_0) / (eta(tau_0)^2 * eta(4*tau_0)), where phi is the golden ratio (A001622), tau_0 = i*log(phi)/Pi, and i = sqrt(-1) (Duverney et al., 2022).
EXAMPLE
1.07248271775513062588537881652660869304392049333099...
MATHEMATICA
With[{eta = DedekindEta, tau0 = Log[GoldenRatio]*I/Pi}, RealDigits[(Surd[GoldenRatio, 4] / Sqrt[5]) * eta[2*tau0]^3 * eta[3*tau0] / (eta[tau0]^2 * eta[4*tau0]), 10, 120][[1]]]
PROG
(PARI) prodinf(k = 2, 1 + (-1)^k/(fibonacci(k-1) + fibonacci(k+1)))
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Mar 26 2024
STATUS
approved