login
A246508
Digital root of numbers congruent to {1,7,11,13,17,19,23,29} modulo 30.
0
1, 7, 2, 4, 8, 1, 5, 2, 4, 1, 5, 7, 2, 4, 8, 5, 7, 4, 8, 1, 5, 7, 2, 8, 1, 7, 2, 4, 8, 1, 5, 2, 4, 1, 5, 7, 2, 4, 8, 5, 7, 4, 8, 1, 5, 7, 2, 8, 1, 7, 2, 4, 8, 1, 5, 2, 4, 1, 5, 7, 2, 4, 8, 5, 7, 4, 8, 1, 5, 7, 2, 8, 1, 7, 2, 4, 8, 1, 5, 2, 4, 1, 5, 7, 2, 4, 8, 5, 7, 4
OFFSET
1,2
COMMENTS
Period 24 repeating sequence, the digital root squares of which produce period 24 palindromic sequence A240924.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
a(n) = A010888(A007775(n)). - Michel Marcus, Nov 25 2014
G.f.: ( -x*(1 +7*x +2*x^2 +4*x^3 +8*x^4 +x^5 +5*x^6 +2*x^7 +4*x^8 +x^9 +5*x^10 +7*x^11 +2*x^12 +4*x^13 +8*x^14 +5*x^15 +7*x^16 +4*x^17 +8*x^18 +x^19 +5*x^20 +7*x^21 +2*x^22 +8*x^23) ) / ( (x-1) *(1+x+x^2) *(1+x) *(1-x+x^2) *(1+x^2) *(x^4-x^2+1) *(1+x^4) *(x^8-x^4+1) ). - R. J. Mathar, Sep 22 2016
CROSSREFS
Cf. A007775 (numbers not divisible by 2, 3 or 5), A240924 (digital root of this sequence squared).
Sequence in context: A126561 A306858 A324558 * A371529 A144875 A248286
KEYWORD
nonn,base,easy
AUTHOR
Gary Croft, Nov 14 2014
STATUS
approved