login
A371159
Expansion of e.g.f. 1/(1 - x^2 - x^3)^x.
3
1, 0, 0, 6, 24, 60, 1080, 9240, 80640, 1058400, 13759200, 190935360, 3053635200, 51632380800, 941283383040, 18521494992000, 387100672358400, 8613563883724800, 203100697223424000, 5053907407233484800, 132496193336322816000, 3648203578700448768000
OFFSET
0,4
FORMULA
a(n) = n! * Sum_{j=0..floor(n/2)} Sum_{k=0..j} binomial(j,n-2*j-k) * |Stirling1(j,k)|/j!.
PROG
(PARI) a(n) = n!*sum(j=0, n\2, sum(k=0, j, binomial(j, n-2*j-k)*abs(stirling(j, k, 1))/j!));
CROSSREFS
Sequence in context: A272951 A358081 A371045 * A371199 A362703 A371046
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 13 2024
STATUS
approved