login
A371158
Expansion of e.g.f. 1/(1 - x - x^2)^(x^3).
3
1, 0, 0, 0, 24, 180, 960, 8820, 108864, 1632960, 23954400, 384199200, 6861697920, 135022567680, 2876013241920, 65658485692800, 1604427163637760, 41810951313331200, 1157676145894195200, 33929486073121766400, 1049361044291348428800
OFFSET
0,5
FORMULA
a(n) = n! * Sum_{j=0..n} Sum_{k=0..floor(j/3)} binomial(j-2*k,n-j-k) * |Stirling1(j-2*k,k)|/(j-2*k)!.
PROG
(PARI) a(n) = n!*sum(j=0, n, sum(k=0, j\3, binomial(j-2*k, n-j-k)*abs(stirling(j-2*k, k, 1))/(j-2*k)!));
CROSSREFS
Sequence in context: A297522 A165187 A052761 * A371198 A073993 A214310
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 13 2024
STATUS
approved