OFFSET
0,2
COMMENTS
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
FORMULA
a(n) ~ zeta(3/2) * exp(3 * Pi^(1/3) * zeta(3/2)^(2/3) * n^(1/3) / 2^(4/3) + 2^(4/9) * Gamma(1/3) * zeta(4/3) * n^(2/9) / (3 * Pi^(1/9) * zeta(3/2)^(2/9)) - 4*2^(2/9) * Gamma(1/3)^2 * zeta(4/3)^2 * n^(1/9) / (243 * Pi^(5/9) * zeta(3/2)^(10/9)) + 16*Gamma(1/3)^3 * zeta(4/3)^3 / (6561 * Pi * zeta(3/2)^2)) / (16 * sqrt(6) * Pi^(5/2) * n^(3/2)) * (1 + (13*2^(7/9) * Gamma(1/3) * zeta(4/3) / (81 * Pi^(4/9) * zeta(3/2)^(8/9)) + 832*2^(7/9) * Gamma(1/3)^4 * zeta(4/3)^4 / (1594323 * Pi^(13/9) * zeta(3/2)^(26/9))) / n^(1/9) + (692224 * 2^(5/9) * Gamma(1/3)^8 * zeta(4/3)^8 / (2541865828329 * Pi^(26/9) * zeta(3/2)^(52/9)) - 128 * 2^(5/9) * Gamma(1/3)^5 * zeta(4/3)^5 / (4782969 * Pi^(17/9) * zeta(3/2)^(34/9)) + 65*2^(5/9) * Gamma(1/3)^2 * zeta(4/3)^2 / (2187*Pi^(8/9) * zeta(3/2)^(16/9)))/n^(2/9)).
MATHEMATICA
nmax=100; CoefficientList[Series[Product[1/(1-x^(k^2))/(1-x^(k^3)), {k, 1, nmax^(1/2)}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 25 2024
STATUS
approved