The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213623 Numbers n such that the denominator of the Bernoulli polynomial B(n,x) equals the Clausen number C(n), {n | A144845(n) = A141056(n)}. 1
 0, 1, 2, 3, 4, 6, 8, 10, 12, 16, 24, 28, 30, 36, 48, 60, 120 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Is this a finite sequence? LINKS MAPLE # Clausen(n, k) defined in A160014. seq(`if`(denom(bernoulli(i, x))=Clausen(i, 1), i, NULL), i=0..120); MATHEMATICA Clausen[n_, k_] := If[n == 0, 1, Times @@ (Select[Divisors[n], PrimeQ[# + k]&] + k)]; Select[Range[0, 120], Denominator[BernoulliB[#, x] // Together] == Clausen[#, 1]&] (* Jean-François Alcover, Aug 13 2019 *) CROSSREFS Cf. A141056, A144845, A213621. Sequence in context: A088881 A020697 A175381 * A074715 A216365 A034287 Adjacent sequences:  A213620 A213621 A213622 * A213624 A213625 A213626 KEYWORD nonn,more AUTHOR Peter Luschny, Jun 16 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 25 10:59 EST 2020. Contains 332231 sequences. (Running on oeis4.)