login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368033
E.g.f. satisfies A(x) = log(1 + x/(1 - A(x))^2).
2
0, 1, 3, 26, 370, 7334, 186468, 5787144, 212100208, 8964974016, 429304991880, 22971063265776, 1358260804832160, 87949592273821680, 6189420503357272608, 470384337802047909120, 38393707193347187344896, 3349704214386311986028160
OFFSET
0,3
FORMULA
E.g.f.: Series_Reversion( (1 - x)^2 * (exp(x) - 1) ).
a(n) = Sum_{k=1..n} (2*n+k-2)!/(2*n-1)! * Stirling1(n,k).
a(n) ~ LambertW(2*exp(1))^n * n^(n-1) / (sqrt(2*(1 + LambertW(2*exp(1)))) * exp(n) * (2 - LambertW(2*exp(1)))^(3*n - 1)). - Vaclav Kotesovec, Mar 29 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(serreverse((1-x)^2*(exp(x)-1)))))
(PARI) a(n) = sum(k=1, n, (2*n+k-2)!/(2*n-1)!*stirling(n, k, 1));
CROSSREFS
Cf. A371342.
Sequence in context: A206404 A373425 A262301 * A376067 A317654 A143155
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 20 2024
STATUS
approved