login
A376067
E.g.f. satisfies A(x) = (-log(1 - x / (1 - A(x))^2)) * (1 - A(x)).
0
0, 1, 3, 26, 372, 7424, 190150, 5946576, 219643592, 9357076704, 451643892408, 24359462797680, 1451906224395792, 94769186402062080, 6723078079388867040, 515064037555614081024, 42380187502270667120640, 3727409807764337879016960
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (2*n-2)!/(2*n-k-1)! * |Stirling1(n,k)|.
E.g.f.: Series_Reversion( (1 - x)^2 * (1 - exp(-x / (1 - x))) ).
PROG
(PARI) a(n) = sum(k=1, n, (2*n-2)!/(2*n-k-1)!*abs(stirling(n, k, 1)));
CROSSREFS
Cf. A085527.
Sequence in context: A373425 A262301 A368033 * A317654 A143155 A300283
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 08 2024
STATUS
approved