login
A366456
G.f. A(x) satisfies A(x) = 1 + x + x/A(x)^(7/2).
4
1, 2, -7, 56, -532, 5600, -62860, 737324, -8929726, 110811344, -1401640814, 18004922936, -234243536436, 3080152906096, -40870739065996, 546563064528906, -7358930622768977, 99672580921800656, -1357142384455626909, 18565841939010374736, -255054402946387767408
OFFSET
0,2
FORMULA
G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366402.
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(9*k/2-1,k) * binomial(n+7*k/2-2,n-k) / (9*k/2-1).
PROG
(PARI) a(n) = (-1)^(n-1)*sum(k=0, n, binomial(9*k/2-1, k)*binomial(n+7*k/2-2, n-k)/(9*k/2-1));
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 10 2023
STATUS
approved