login
A366452
G.f. A(x) satisfies A(x) = 1 + x + x*A(x)^(5/2).
5
1, 2, 5, 20, 90, 440, 2266, 12110, 66525, 373320, 2130865, 12332512, 72202860, 426861830, 2544727475, 15280236800, 92333523153, 561054410200, 3426075429740, 21013974400920, 129403499560500, 799733464576880, 4958649842375975, 30837325310579350
OFFSET
0,2
FORMULA
G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366404.
a(n) = Sum_{k=0..n} binomial(3*k/2+1,n-k) * binomial(5*k/2,k) / (3*k/2+1).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A259757. - Seiichi Manyama, Apr 04 2024
PROG
(PARI) a(n) = sum(k=0, n, binomial(3*k/2+1, n-k)*binomial(5*k/2, k)/(3*k/2+1));
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 10 2023
STATUS
approved