OFFSET
0,2
LINKS
Robert P. P. McKone, Table of n, a(n) for n = 0..149
Robert P. P. McKone, The distinct characteristic polynomials for a(0)-a(23).
EXAMPLE
For n = 1 the a(1) = 6 characteristic polynomials are {x^2, -4 + x^2, -2 + x^2, -1 + x^2, -4*x + x^2, 2-4*x + x^2}.
MATHEMATICA
mat[n_Integer?Positive]:=mat[n]=Array[m, {n, n}]; flatMat[n_Integer?Positive]:=flatMat[n]=Flatten[mat[n]]; charPolyMat[n_Integer?Positive]:=charPolyMat[n]=FullSimplify[CoefficientList[Expand[CharacteristicPolynomial[mat[n], x]], x]]; a[d_Integer?Positive, 0]=1; a[d_Integer?Positive, n_Integer?Positive]:=a[d, n]=Length[DeleteDuplicates[Flatten[Table[Evaluate[charPolyMat[d]], ##]&@@Table[{flatMat[d][[i]], 0, n}, {i, 1, d^2}], 3]]]; Table[a[2, n], {n, 0, 41}]
PROG
(PARI) a(n) = my(list=List()); for (i=0, n, for (j=0, n, for(k=0, n, for(m=0, n, my(p=charpoly([i, j; k, m])); listput(list, p))))); #Set(list); \\ Michel Marcus, Oct 11 2023
(Python)
def A366448(n): return len({(a+d, a*d-b*c) for a in range(n+1) for b in range(n+1) for c in range(b+1) for d in range(a+1)}) # Chai Wah Wu, Oct 12 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert P. P. McKone, Oct 10 2023
STATUS
approved