login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364946
Sixth Lie-Betti number of a path graph on n vertices.
1
0, 0, 0, 4, 33, 140, 424, 1039, 2213, 4262, 7606, 12786, 20482, 31532, 46952, 67957, 95983, 132710, 180086, 240352, 316068, 410140, 525848, 666875, 837337, 1041814, 1285382, 1573646, 1912774, 2309532, 2771320, 3306209, 3922979, 4631158, 5441062
OFFSET
1,4
COMMENTS
Sequence T(n,6) in A360571.
LINKS
Marco Aldi and Samuel Bevins, L_oo-algebras and hypergraphs, arXiv:2212.13608 [math.CO], 2022. See page 9.
Meera Mainkar, Graphs and two step nilpotent Lie algebras, arXiv:1310.3414 [math.DG], 2013. See page 1.
Eric Weisstein's World of Mathematics, Path Graph.
FORMULA
a(1) = a(2) = a(3) = 0, a(4) = 4, a(5) = 33, a(n) = (n^6 + 45*n^5 - 125*n^4 - 2865*n^3 + 23524*n^2 - 76740*n + 98640)/720 for n >= 6.
G.f.: x^4*(4 + 5*x - 7*x^2 - 3*x^3 - 4*x^4 + 15*x^5 - 15*x^6 + 7*x^7 - x^8)/(1 - x)^7. - Stefano Spezia, Aug 29 2023
MATHEMATICA
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 4, 33, 140, 424, 1039, 2213, 4262, 7606, 12786}, 50] (* Paolo Xausa, May 28 2024 *)
PROG
(Python)
def A364946_up_to(n):
values = [0, 0, 0, 4, 33]
for i in range(6, n+1):
result = (i**6 + 45*i**5 - 125*i**4 - 2865*i**3 + 23524*i**2 - 76740*i + 98640)/720
values.append(int(result))
return values
CROSSREFS
Cf. A360571 (path graph triangle), A088459 (second Lie-Betti number of path graphs), A361230, A362007, A364579.
Sequence in context: A152041 A041027 A362820 * A209034 A095671 A278671
KEYWORD
nonn,easy
AUTHOR
Samuel J. Bevins, Aug 14 2023
STATUS
approved