login
A364593
G.f. satisfies A(x) = 1/(1-x) + x^2*(1-x)*A(x)^3.
1
1, 1, 2, 3, 7, 14, 36, 85, 228, 587, 1612, 4354, 12166, 33832, 95876, 271803, 779287, 2239584, 6483386, 18823945, 54932299, 160771540, 472322632, 1391323310, 4110685812, 12173949214, 36141795088, 107521223008, 320531857144, 957289637952, 2864055208772
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k) * binomial(3*k,k) / (2*k+1).
PROG
(PARI) a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(3*k, k)/(2*k+1));
CROSSREFS
Sequence in context: A006660 A306844 A213906 * A123777 A245899 A246747
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jul 29 2023
STATUS
approved