login
A364595
G.f. satisfies A(x) = 1/(1-x) + x^3*(1-x)*A(x)^3.
2
1, 1, 1, 2, 3, 4, 8, 15, 25, 50, 102, 193, 390, 815, 1645, 3385, 7141, 14893, 31196, 66309, 140752, 299043, 640367, 1373929, 2950006, 6360976, 13749865, 29753891, 64547097, 140329453, 305470485, 666084272, 1454920255, 3181946080, 6968134645, 15280422274
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * binomial(3*k,k) / (2*k+1).
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(n-2*k, k)*binomial(3*k, k)/(2*k+1));
CROSSREFS
Sequence in context: A097029 A122774 A274166 * A352817 A189740 A118841
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jul 29 2023
STATUS
approved