login
A363930
Irregular table T(n, k), n >= 0, k = 1..A363710(n), read by rows; the n-th row lists the nonnegative numbers m <= n such that A003188(m) AND A003188(n-m) = 0 (where AND denotes the bitwise AND operator).
1
0, 0, 1, 0, 2, 0, 3, 0, 1, 3, 4, 0, 1, 4, 5, 0, 6, 0, 7, 0, 1, 7, 8, 0, 1, 2, 3, 6, 7, 8, 9, 0, 2, 3, 7, 8, 10, 0, 3, 8, 11, 0, 1, 3, 9, 11, 12, 0, 1, 12, 13, 0, 14, 0, 15, 0, 1, 15, 16, 0, 1, 2, 3, 14, 15, 16, 17, 0, 2, 3, 4, 6, 12, 14, 15, 16, 18, 0, 3, 4, 7, 12, 15, 16, 19
OFFSET
0,5
COMMENTS
This sequence is related to the T-square fractal (see A363710).
LINKS
Rémy Sigrist, Table of n, a(n) for n = 0..13126 (rows for n = 0..2^9 flattened)
FORMULA
T(n, 1) = 0.
T(n, A363710(n)) = n.
T(n, k) + T(n, A363710(n)+1-k) = n.
EXAMPLE
Table T(n, k) begins:
n n-th row
-- ----------------------
0 0
1 0, 1
2 0, 2
3 0, 3
4 0, 1, 3, 4
5 0, 1, 4, 5
6 0, 6
7 0, 7
8 0, 1, 7, 8
9 0, 1, 2, 3, 6, 7, 8, 9
10 0, 2, 3, 7, 8, 10
11 0, 3, 8, 11
12 0, 1, 3, 9, 11, 12
13 0, 1, 12, 13
14 0, 14
15 0, 15
16 0, 1, 15, 16
PROG
(PARI) row(n) = { select (m -> bitand(bitxor(m, m\2), bitxor(n-m, (n-m)\2))==0, [0..n]) }
CROSSREFS
See A295989, A353174 and A362327 for similar sequences.
Sequence in context: A336316 A362110 A236138 * A361755 A362755 A035614
KEYWORD
nonn,base,tabf
AUTHOR
Rémy Sigrist, Jun 28 2023
STATUS
approved