login
A363931
Square array of distinct positive integers A(n, k), n, k > 0, read and filled the greedy way by antidiagonals upwards such that the concatenations of the terms of two distinct rows are always equal.
2
1, 11, 12, 112, 2, 3, 1123, 31, 311, 111, 11231, 1111, 1112, 1121, 121, 112311, 11121, 21, 13, 32, 321, 1123111, 11213, 3211, 32111, 211, 1113, 113, 11231111, 1213, 2111, 131, 312, 1312, 122, 1221, 112311112, 213, 21113, 3122, 22, 212, 2121, 1211, 2112
OFFSET
1,2
COMMENTS
Leading zeros are ignored.
Will every positive integer appear?
EXAMPLE
Array A(n, k) begins:
n\k| 1 2 3 4 5 6 7
---+-----------------------------------------------------
1| 1 12 3 111 121 321 113
2| 11 2 311 1121 32 1113 122
3| 112 31 1112 13 211 1312 2121
4| 1123 1111 21 32111 312 212 11211
5| 11231 11121 3211 131 22 121121 111112
6| 112311 11213 2111 3122 12112 111111 222
7| 1123111 1213 21113 12212 112111 111222 3131
.
Array A(n, k), with digits vertically aligned, begins:
+-+---+-+-----+-----+-----+-----+-------+-------+---------+
|1|1 2|3|1 1 1|1 2 1|3 2 1|1 1 3|1 2 2 1|2 1 1 2|1 1 1 1 1|
+-+-+-+-+---+-+-----+---+-+-----+-----+-+-----+-+-------+-+-----+
|1 1|2|3 1 1|1 1 2 1|3 2|1 1 1 3|1 2 2|1 2 1 1|2 1 1 1 1|1 1 2 2|
+---+-+---+-+-----+-+-+-+---+---+---+-+-----+-+-------+-+-------+
|1 1 2|3 1|1 1 1 2|1 3|2 1 1|1 3 1 2|2 1 2 1|1 2 1 1 1|1 1 1 2 2|
+-----+-+-+-----+-+-+-+-----+-+-----+-----+-+-------+-+-------+-+
|1 1 2 3|1 1 1 1|2 1|3 2 1 1 1|3 1 2|2 1 2|1 1 2 1 1|1 1 1 1 2|
+-------+-+-----+---+-------+-+---+-+-+---+-------+-+---------+
|1 1 2 3 1|1 1 1 2 1|3 2 1 1|1 3 1|2 2|1 2 1 1 2 1|1 1 1 1 1 2|
+---------+-+-------+-+-----+-+---+---+---------+-+---------+-+
|1 1 2 3 1 1|1 1 2 1 3|2 1 1 1|3 1 2 2|1 2 1 1 2|1 1 1 1 1 1|
+-----------+-+-------+-------+-+-----+---+-----+-----+-----+-----+
|1 1 2 3 1 1 1|1 2 1 3|2 1 1 1 3|1 2 2 1 2|1 1 2 1 1 1|1 1 1 2 2 2|
+-------------+-------+---------+---------+-----------+-----------+
PROG
(C++) See Links section.
CROSSREFS
Sequence in context: A110382 A095764 A342944 * A296447 A110380 A164854
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Jun 28 2023
STATUS
approved