login
A363538
Decimal expansion of Sum_{k>=1} (H(k) - log(k) - gamma)/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and gamma is Euler's constant (A001620).
2
7, 2, 8, 6, 9, 3, 9, 1, 7, 0, 0, 3, 9, 3, 0, 6, 0, 5, 9, 3, 7, 6, 0, 5, 8, 9, 1, 0, 2, 0, 2, 9, 1, 8, 0, 0, 4, 1, 7, 5, 0, 2, 7, 1, 8, 8, 1, 2, 9, 2, 2, 2, 9, 9, 8, 9, 1, 3, 6, 9, 0, 0, 5, 4, 2, 5, 2, 7, 2, 2, 7, 1, 9, 2, 5, 2, 3, 3, 5, 8, 6, 9, 6, 4, 2, 6, 9, 7, 4, 4, 2, 3, 8, 8, 6, 5, 3, 7, 8, 6, 0, 4, 5, 5, 9
OFFSET
0,1
LINKS
Ovidiu Furdui, Problem 844, Problems and Solutions, The College Mathematics Journal, Vol. 38, No. 1 (2007), p. 61; Infinite sums and Euler's constant, Solution to Problem 844, ibid., Vol. 39, No. 1 (2008), pp. 71-72.
FORMULA
Equals -gamma_1 - gamma^2/2 + Pi^2/12, where gamma_1 is the 1st Stieltjes constant (A082633).
EXAMPLE
0.72869391700393060593760589102029180041750271881292...
MATHEMATICA
RealDigits[-StieltjesGamma[1] - EulerGamma^2/2 + Pi^2/12, 10, 120][[1]]
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Jun 09 2023
STATUS
approved