login
A362976
Decimal expansion of zeta(3/5) * zeta(4/5) * Product_{p prime} (1 - 1/p^(8/5) - 1/p^(9/5) - 1/p^2 + 1/p^(13/5) + 1/p^(14/5)).
3
1, 6, 8, 2, 4, 4, 1, 5, 1, 0, 2, 3, 5, 9, 3, 2, 9, 3, 8, 9, 5, 6, 0, 0, 2, 0, 3, 4, 3, 1, 7, 7, 1, 2, 4, 5, 3, 3, 7, 2, 3, 3, 6, 2, 1, 3, 5, 7, 9, 9, 4, 9, 4, 3, 8, 5, 1, 5, 8, 3, 5, 4, 3, 9, 7, 4, 9, 6, 9, 8, 9, 7, 7, 6, 7, 6, 0, 1, 0, 6, 4, 7, 8, 5, 6, 2, 7, 7, 7, 7, 5, 4, 1, 9, 7, 6, 4, 3, 9, 5, 5, 6, 7, 5, 2
OFFSET
1,2
COMMENTS
The coefficient c_2 of the third term in the asymptotic formula for the number of cubefull numbers (A036966) not exceeding x, N(x) = c_0 * x^(1/3) + c_1 * x^(1/4) + c_2 * x^(1/5) + o(x^(1/8)) (Bateman and Grosswald, 1958; Finch, 2003).
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.6.1, pp. 113-115.
LINKS
Paul T. Bateman and Emil Grosswald, On a theorem of Erdős and Szekeres, Illinois Journal of Mathematics, Vol. 2, No. 1 (1958), pp. 88-98.
P. Shiu, The distribution of cube-full numbers, Glasgow Mathematical Journal, Vol. 33, No. 3 (1991), pp. 287-295.
P. Shiu, Cube-full numbers in short intervals, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 112, No. 1 (1992), pp. 1-5.
EXAMPLE
1.68244151023593293895600203431771245337233621357994...
PROG
(PARI) zeta(3/5) * zeta(4/5) * prodeulerrat(1 - 1/p^8 - 1/p^9 - 1/p^10 + 1/p^13 + 1/p^14, 1/5)
CROSSREFS
Sequence in context: A021860 A161015 A263719 * A154564 A152914 A178647
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, May 11 2023
STATUS
approved