login
A362196
Number of Grassmannian permutations of size n that avoid a pattern, sigma, where sigma is a pattern of size 9 with exactly one descent.
1
1, 1, 2, 5, 12, 27, 58, 121, 248, 502, 1003, 1970, 3785, 7086, 12897, 22804, 39187, 65519, 106744, 169747, 263930, 401909, 600348, 880947, 1271602, 1807756, 2533961, 3505672, 4791295, 6474512, 8656907, 11460918, 15033141, 19548013, 25211902, 32267633, 40999480
OFFSET
0,3
COMMENTS
A permutation is said to be Grassmannian if it has at most one descent. The definition for sigma is a pattern of size 9 with exactly one descent. For example, sigma can be chosen to be 124793568, 248135679, 367912458, 591234678, etc.
LINKS
Juan B. Gil and Jessica Tomasko, Restricted Grassmannian permutations, ECA 2:4 (2022) Article S4PP6.
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = 1 + Sum_{i=2..8} binomial(n,i).
G.f.: (1-8*x+29*x^2-61*x^3+81*x^4-69*x^5+37*x^6-11*x^7+2*x^8)/(1-x)^9.
a(n) = (n^8-20*n^7+210*n^6-1064*n^5+3969*n^4-4340*n^3+15980*n^2-14736*n+40320)/8!. - Alois P. Heinz, Apr 21 2023
MATHEMATICA
Table[1 + Sum[Binomial[n, i-1], {i, 3, 9}], {n, 0, 36}] (* Stefano Spezia, Apr 20 2023 *)
CROSSREFS
Sequence in context: A362194 A111000 A362195 * A328882 A362197 A000325
KEYWORD
nonn,easy
AUTHOR
Jessica A. Tomasko, Apr 20 2023
STATUS
approved