login
A362195
Number of Grassmannian permutations of size n that avoid a pattern, sigma, where sigma is a pattern of size 8 with exactly one descent.
1
1, 1, 2, 5, 12, 27, 58, 121, 247, 493, 958, 1805, 3290, 5799, 9894, 16369, 26317, 41209, 62986, 94165, 137960, 198419, 280578, 390633, 536131, 726181, 971686, 1285597, 1683190, 2182367, 2803982, 3572193, 4514841, 5663857, 7055698, 8731813, 10739140, 13130635
OFFSET
0,3
COMMENTS
A permutation is said to be Grassmannian if it has at most one descent. The definition for sigma is a pattern of size 8 with exactly one descent. For example, sigma can be chosen to be 12473568, 24781356, 36124578, 58123467, etc.
LINKS
Juan B. Gil and Jessica Tomasko, Restricted Grassmannian permutations, ECA 2:4 (2022) Article S4PP6.
FORMULA
a(n) = 1 + Sum_{i=3..8} binomial(n, i-1).
G.f.: (1-7*x+22*x^2-39*x^3+42*x^4-27*x^5+10*x^6-x^7)/(1-x)^8.
MATHEMATICA
Table[1 + Sum[Binomial[n, i-1], {i, 3, 8}], {n, 0, 37}] (* Stefano Spezia, Apr 20 2023 *)
CROSSREFS
Sequence in context: A292799 A362194 A111000 * A362196 A328882 A362197
KEYWORD
nonn,easy
AUTHOR
Jessica A. Tomasko, Apr 20 2023
STATUS
approved