login
A361078
Numbers k for which k = gcd(k', k"), where k' is the arithmetic derivative of k (A003415) and k" is the second derivative of k (A068346).
0
4, 16, 27, 64, 108, 432, 729, 1024, 2916, 3125, 4096, 6912, 12500, 16384, 19683, 27648, 46656, 50000, 84375, 110592, 186624, 314928, 337500, 746496, 800000, 823543, 1048576, 1259712, 2125764, 2278125, 3200000, 3294172, 4194304, 5038848, 5400000, 7077888, 8503056
OFFSET
1,1
COMMENTS
The sequence is infinite because for p prime, m = p^p (A051674) is a term.
For the prime number p, the number m = 4^p is a term. Indeed: (4^p)' = p*4^p, (4^p)" = (1 + p^2)*4^p and gcd((4^p)', 4^p) = gcd(p*4^p, (1 + p^2)*4^p) = 4^p*gcd(p, 1 + p^2) = 4^p.
Numbers of the form a*b with a, b in A051674 are terms. Indeed, if m = a*b then m' = a'*b + a*b' = a*a + b*b = 2*a*b = 2*m, m" = a*b + 2*a'b + 2*a*b' = a*b + 2*a*b + 2*a*b = 5*a*b = 5*m and gcd(m', m") = (2*m, 5*m) = m.
EXAMPLE
4' = 4, 4" = 4 and gcd(4', 4") = gcd(4, 4) = 4, so 4 is a term.
16' = 32, 16" = 32' = 80 and gcd(16', 16") = gcd(32, 80) = 16, so 16 is a term.
MATHEMATICA
d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[10^6], GCD[d[#], d[d[#]]] == # &] (* Amiram Eldar, Mar 03 2023 *)
PROG
(Magma) f:=func<h |h le 1 select 0 else h*(&+[Factorisation(h)[i][2] / Factorisation(h)[i][1]: i in [1..#Factorisation(h)]])>; [n:n in [2..100000]|not IsPrime(n) and Gcd(Floor(f(n)), Floor(f(Floor(f(n))))) eq n];
(PARI) ader(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
isok(k) = gcd(ader(k), ader(ader(k))) == k; \\ Michel Marcus, Mar 03 2023
CROSSREFS
Sequence in context: A097764 A227993 A072873 * A072653 A368107 A008478
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Mar 01 2023
STATUS
approved