login
A360673
Number of multisets of positive integers whose right half (exclusive) sums to n.
17
1, 2, 7, 13, 27, 37, 73, 89, 156, 205, 315, 387, 644, 749, 1104, 1442, 2015, 2453, 3529, 4239, 5926, 7360, 9624, 11842, 16115, 19445, 25084, 31137, 39911, 48374, 62559, 75135, 95263, 115763, 143749, 174874, 218614, 261419, 321991, 388712, 477439, 569968, 698493
OFFSET
0,2
LINKS
FORMULA
G.f.: 1 + Sum_{k>=1} x^k*(2 - x^k)/((1 - x^k)^(k+2) * Product_{j=1..k-1} (1-x^j)). - Andrew Howroyd, Mar 11 2023
EXAMPLE
The a(0) = 1 through a(3) = 13 multisets:
{} {1,1} {1,2} {1,3}
{1,1,1} {2,2} {2,3}
{1,1,2} {3,3}
{1,2,2} {1,1,3}
{2,2,2} {1,2,3}
{1,1,1,1} {1,3,3}
{1,1,1,1,1} {2,2,3}
{2,3,3}
{3,3,3}
{1,1,1,2}
{1,1,1,1,2}
{1,1,1,1,1,1}
{1,1,1,1,1,1,1}
For example, the multiset y = {1,1,1,1,2} has right half (exclusive) {1,2}, with sum 3, so y is counted under a(3).
MATHEMATICA
Table[Length[Select[Join@@IntegerPartitions/@Range[0, 3*k], Total[Take[#, Floor[Length[#]/2]]]==k&]], {k, 0, 15}]
PROG
(PARI) seq(n)={my(s=1 + O(x*x^n), p=s); for(k=1, n, s += p*x^k*(2-x^k)/(1-x^k + O(x*x^(n-k)))^(k+2); p /= 1 - x^k); Vec(s)} \\ Andrew Howroyd, Mar 11 2023
CROSSREFS
The inclusive version is A360671.
Column sums of A360672.
The case of sets is A360954, inclusive A360955.
The even-length case is A360956.
A359893 and A359901 count partitions by median.
First for prime indices, second for partitions, third for prime factors:
- A360676 gives left sum (exclusive), counted by A360672, product A361200.
- A360677 gives right sum (exclusive), counted by A360675, product A361201.
- A360678 gives left sum (inclusive), counted by A360675, product A347043.
- A360679 gives right sum (inclusive), counted by A360672, product A347044.
Sequence in context: A237443 A182415 A275491 * A183435 A360385 A141777
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 04 2023
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Mar 11 2023
STATUS
approved