OFFSET
1,2
COMMENTS
Appears to contain every positive integer at least once.
This is correct. For any integer m, let p be any prime > m. Then a(m*p^A001222(m)) = m. - Sebastian Karlsson, Oct 11 2022
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
EXAMPLE
The divisors of 123456 with half bigomega are: 16, 24, 5144, 7716, so a(123456) = 16.
MATHEMATICA
Table[Min[Select[Divisors[n], PrimeOmega[#]==Ceiling[PrimeOmega[n]/2]&]], {n, 100}]
a[n_] := Module[{p = Flatten[Table[#[[1]], {#[[2]]}] & /@ FactorInteger[n]]}, Times @@ p[[1 ;; Ceiling[Length[p]/2]]]]; Array[a, 100] (* Amiram Eldar, Nov 02 2024 *)
PROG
(PARI) a(n) = my(bn=ceil(bigomega(n)/2)); fordiv(n, d, if (bigomega(d)==bn, return (d))); \\ Michel Marcus, Aug 18 2021
(Python)
from sympy import divisors, factorint
def a(n):
npf = len(factorint(n, multiple=True))
for d in divisors(n):
if len(factorint(d, multiple=True)) == (npf+1)//2: return d
return 1
print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Aug 18 2021
(Python 3.8+)
from math import prod
from sympy import factorint
def A347043(n):
fs = factorint(n, multiple=True)
l = len(fs)
return prod(fs[:(l+1)//2]) # Chai Wah Wu, Aug 20 2021
CROSSREFS
Positions of 2's are A001747.
Positions of odd terms are A005408.
Positions of even terms are A005843.
The case of powers of 2 is A016116.
The exact version is A347045.
A000005 counts divisors.
A001221 counts distinct prime factors.
A001222 counts all prime factors (also called bigomega).
A340387 lists numbers whose sum of prime indices is twice bigomega.
A340609 lists numbers whose maximum prime index divides bigomega.
A340610 lists numbers whose maximum prime index is divisible by bigomega.
A347042 counts divisors d|n such that bigomega(d) divides bigomega(n).
KEYWORD
nonn,changed
AUTHOR
Gus Wiseman, Aug 15 2021
STATUS
approved