OFFSET
1,1
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
We try 1..k until the condition is met:
a(7) != 1 because 2*7*1 = 14 and 14 - 1 = 13, a prime.
a(7) != 2 because 2*7*2 = 28 and 28 + 1 = 29, a prime.
a(7) != 3 because 2*7*3 = 42 and 42 - 1 = 41 and 42 + 1 = 43, both primes.
a(7) = 4 because 2*7*4 = 56 and 56 - 1 = 55 and 56 + 1 = 57 are both nonprimes.
MAPLE
f:= proc(n) local k;
for k from 1 do
if not isprime(2*n*k-1) and not isprime(2*n*k+1) then return k fi
od
end proc:
map(f, [$1..100]); # Robert Israel, Feb 07 2023
MATHEMATICA
a[n_] := Module[{k = 1}, While[PrimeQ[2*n*k - 1] || PrimeQ[2*n*k + 1], k++]; k]; Array[a, 100] (* Amiram Eldar, Jan 25 2023 *)
PROG
(Python)
from sympy import isprime
from itertools import count
def a(n): return next(k for k in count(1) if not isprime(2*n*k-1) and not isprime(2*n*k+1))
print([a(n) for n in range(1, 86)]) # Michael S. Branicky, Jan 25 2023
(PARI) a(n) = my(k=1); while(isprime(2*n*k-1) || isprime(2*n*k+1), k++); k; \\ Michel Marcus, Jan 25 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Tamas Sandor Nagy, Jan 25 2023
EXTENSIONS
More terms from Michael S. Branicky, Jan 25 2023
STATUS
approved