login
A358227
Parity of A328382(n), where A328382(n) = A276086(n) mod A003415(n), with A003415 the arithmetic derivative and A276086 the primorial base exp-function.
6
0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1
OFFSET
2
FORMULA
a(n) = A000035(A328382(n)).
For all n >= 2, a(n) <= 1-A358220(n).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A358227(n) = ((A276086(n)%A003415(n))%2);
CROSSREFS
Characteristic function of A358228, whose complement A358229 gives the positions of zeros.
Cf. also A358224.
Sequence in context: A309766 A354033 A328979 * A284524 A226474 A309768
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 25 2022
STATUS
approved