login
A357927
Number of subsets of [n] in which exactly half of the elements are Fibonacci numbers.
2
1, 1, 1, 1, 4, 5, 15, 35, 56, 126, 252, 462, 792, 1716, 3003, 5005, 8008, 12376, 18564, 27132, 38760, 116280, 170544, 245157, 346104, 480700, 657800, 888030, 1184040, 1560780, 2035800, 2629575, 3365856, 4272048, 18156204, 23535820, 30260340, 38608020, 48903492
OFFSET
0,5
LINKS
FORMULA
a(n) = binomial(n,A072649(n)).
a(n) = Sum_{j>=0} binomial(A072649(n),j)*binomial(n-A072649(n),j).
EXAMPLE
a(6) = 15: {}, {1,4}, {1,6}, {2,4}, {2,6}, {3,4}, {3,6}, {4,5}, {5,6}, {1,2,4,6}, {1,3,4,6}, {1,4,5,6}, {2,3,4,6}, {2,4,5,6}, {3,4,5,6}.
MAPLE
f:= proc(n) option remember; `if`(n=0, 0, f(n-1)+
`if`((t-> ormap(issqr, [t-4, t+4]))(5*n^2), 1, 0))
end:
a:= n-> binomial(n, f(n)):
seq(a(n), n=0..38);
MATHEMATICA
f[n_] := Module[{j}, For[j = Floor@Log[GoldenRatio, n], Fibonacci[j+1] <= n, j++]; j-1];
a[n_] := If[n == 0, 1, Binomial[n, f[n]]];
Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Nov 17 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 20 2022
STATUS
approved