login
A357319
Decimal expansion of 6*Pi*Gamma(2/3)^2/(sqrt(3)*Gamma(1/3)^4).
0
3, 8, 7, 4, 3, 8, 2, 3, 8, 7, 8, 4, 8, 8, 5, 4, 2, 0, 5, 6, 9, 5, 6, 4, 8, 8, 4, 7, 5, 4, 0, 1, 8, 9, 4, 8, 0, 4, 9, 6, 0, 3, 8, 8, 3, 3, 6, 3, 6, 8, 4, 8, 9, 0, 4, 3, 9, 4, 6, 4, 4, 5, 7, 5, 5, 8, 7, 6, 5, 4, 3, 9, 0, 4, 2, 8, 9, 6, 0, 6, 0, 3, 4, 0, 6, 6, 2, 8, 6, 1
OFFSET
0,1
LINKS
Markus Faulhuber, Anupam Gumber, and Irina Shafkulovska, The AGM of Gauss, Ramanujan's corresponding theory, and spectral bounds of self-adjoint operators, arXiv:2209.04202 [math.CA], 2022, p. 21.
FORMULA
Equals 6*A000796*A073006^2/(A002194*A073005^4).
Equals (8*Pi^3)/(sqrt(3)*Gamma(1/3)^6) = A212003/(A002194*A073005^6). - Peter Luschny, Sep 24 2022
EXAMPLE
0.3874382387848854205695648847540189480496...
MAPLE
(8*Pi^3)/(sqrt(3)*GAMMA(1/3)^6): evalf(%, 92); # Peter Luschny, Sep 24 2022
MATHEMATICA
First[RealDigits[N[6*Pi*Gamma[2/3]^2/(Sqrt[3]*Gamma[1/3]^4), 90]]]
PROG
(PARI) 6*Pi*gamma(2/3)^2/(sqrt(3)*gamma(1/3)^4) \\ Michel Marcus, Sep 24 2022
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Stefano Spezia, Sep 23 2022
STATUS
approved