login
A357095
E.g.f. satisfies A(x)^A(x) = 1/(1 - x * A(x))^(log(1 - x * A(x))^2 / 6).
1
1, 0, 0, 1, 6, 35, 275, 2884, 35672, 494724, 7673670, 132896676, 2544253426, 53252983992, 1208888367596, 29592833903424, 777311220788320, 21808542026480120, 650880782773059840, 20590135175285212800, 688212821908314587880, 24235789570607605377680
OFFSET
0,5
FORMULA
E.g.f. satisfies A(x) * log(A(x)) = -log(1 - x * A(x))^3 / 6.
a(n) = Sum_{k=0..floor(n/3)} (3*k)! * (n-k+1)^(k-1) * |Stirling1(n,3*k)|/(6^k * k!).
PROG
(PARI) a(n) = sum(k=0, n\3, (3*k)!*(n-k+1)^(k-1)*abs(stirling(n, 3*k, 1))/(6^k*k!));
CROSSREFS
Cf. A357037.
Sequence in context: A325115 A087631 A167579 * A030446 A093989 A357037
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 11 2022
STATUS
approved