OFFSET
0,4
COMMENTS
Square array A(x,y), x >= 0, y >= 0, defined as follows:
(1) Extend the Wythoff array infinitely to the left, maintaining the Fibonacci recurrence (see A287870 examples). We denote this extended array as eW(n,m), n >= 0, m any integer, indexed such that eW(n,0) = n. From each row n, form the set of pairs S_n = {(eW(n,m+1),eW(n,m)) : integer m)}.
(2) Define addition and multiplication of pairs by (j1,k1) + (j2,k2) = (j1+j2, k1+k2) and (j1,k1) o (j2,k2) = (j1*j2 + k1*k2, j1*k2 + k1*j2 - k1*k2). (This defines a commutative ring with identity (1,0).)
(3) For nonnegative integers x and y, there is an integer z such that for every pair (j_x,k_x) in S_x and every pair (j_y,k_y) in S_y, (j_x,k_x) o (j_y,k_y) is in S_z. Define A(x,y) = z.
As a binary operation, A(.,.) is analogous to multiplication of coefficients in scientific numeric notation. The column position, m, used to define a pair in (1) above does not affect the eventual outcome, A(x,y), in (3), as no special pairs are selected from the pairs in S_x or S_y. The column position is analogous to the exponent. Notice also A(1,1) = 15 is substantially larger than A(2,2) = 4. This can be seen as analogous to 0.3 * 0.4 = 0.12 requiring more digits than 0.5 * 0.8 = 0.4.
LINKS
Peter G. Anderson, More Properties of the Zeckendorf Array, Fib. Quart. 52-5 (2014), 15-21.
P. Arnoux, Some remarks about Fibonacci multiplication, Appl. Math. Lett. 2 (1989), 319-320.
Clark Kimberling, The Zeckendorf array equals the Wythoff array, Fibonacci Quarterly, Vol. 33, No. 1 (1995), pp. 3-8.
FORMULA
EXAMPLE
Calculation for A(1,2). Rows 1 and 2 of A287870 (indexed from 0) start 1, 3, ... and 2, 4, ... . So we may use the pairs (3,1) and (4,2). The defined multiplication gives (3*4 + 1*2, 3*2 + 4*1 - 1*2) = (14,8). 8, 14 , ... is in row 8 of A287870, so A(1,2) = 8.
For A(1,1), we start as above to get (3*3 + 1*1, 3*1 + 3*1 - 1*1) = (10,5). In the more general case, we form a sequence using the Fibonacci recurrence (as ..., 5, 10, ... may be in the extension leftwards of A287870). This starts 5, 10, 5+10=15, 10+15=25, 15+25=40, ... . We observe 15, 25, 40, ... is in row 15. So A(1,1) = 15.
The top left corner of the array:
0 1 2 3 4 5 6 7 8 9
1 15 8 12 44 19 62 26 30 91
2 8 4 18 24 28 34 14 44 50
3 12 18 27 96 42 51 57 66 198
4 44 24 96 128 56 180 76 88 264
5 19 28 42 56 65 79 33 102 116
6 62 34 51 180 79 253 107 124 371
7 26 14 57 76 33 107 45 138 157
8 30 44 66 88 102 124 138 160 182
9 91 50 198 264 116 371 157 182 544
PROG
(PARI) lowerw(n) = (n+sqrtint(5*n^2))\2 ; \\ A000201
upperw(n) = (sqrtint(n^2*5)+n*3)\2; \\ A001950
compoundw(n) = (sqrtint(n^2*5)+n*3)\2 - 1; \\ A003622
wpair(p) = {my(x=p[2], y = p[1], z); while(1, my(n=1, ok=1); while(ok, my(xx = lowerw(n), yy = upperw(n)); if ((x == xx) && (y == yy), return([xx, yy])); if (xx > x, ok = 0); n++; ); z = y; y += x; x = z; ); }
row(p) = {my(x=p[1], y=p[2], u); while (1, my(n=1, ok=1); while(ok, my(xx = lowerw(n), yy = compoundw(n)); if ((x == xx) && (y == yy), return(n)); if (xx > x, ok = 0); n++; ); u = x; x = y - u; y = u; ); } \\ similar to A120873
wrow(p) = row(wpair(p));
prodpair(v1, v2) = my(j1=v1[1], j2 = v2[1], k1 = v1[2], k2 = v2[2]); [j1*j2 + k1*k2, j1*k2 + k1*j2 - k1*k2];
pair(n) = [lowerw(n+1), n];
T(n, k) = my(pn = pair(n), pk = pair(k), px = prodpair(pn, pk)); wrow(px)-1; \\ Michel Marcus, Sep 18 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Munn, Sep 11 2022
STATUS
approved