login
A356884
E.g.f. satisfies A(x)^A(x) = 1/(1 - x*A(x))^x.
2
1, 0, 2, 3, 20, 150, 1254, 14280, 190000, 2863728, 49465080, 954312480, 20303200488, 473604468480, 12007399511184, 328671680500800, 9663415159357440, 303695188102656000, 10159173955921651776, 360424299614544829440, 13517056067747847719040
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k+1)^(k-1) * |Stirling1(n-k,k)|/(n-k)!.
PROG
(PARI) a(n) = n!*sum(k=0, n\2, (n-2*k+1)^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 02 2022
STATUS
approved